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Abstract
Database Management System (DBMS) is the key component
for data-intensive applications. Recently, researchers propose
many tools to comprehensively test DBMS systems for find-
ing various bugs. However, these tools only cover a small
subset of diverse syntax elements defined in DBMS-specific
SQL dialects, leaving a large number of features unexplored.

In this paper, we propose ParserFuzz, a novel fuzzing
framework that automatically extracts grammar rules from
DBMSs’ built-in syntax definition files for SQL query gen-
eration. Without any input corpus, ParserFuzz can generate
diverse query statements to saturate the grammar features of
the tested DBMSs, which grammar features could be missed
by previous tools. Additionally, ParserFuzz utilizes code
coverage as feedback to guide the query mutation, which
combines different DBMS features extracted from the syntax
rules to find more function and safety bugs. In our evaluation,
ParserFuzz outperforms all state-of-the-art existing DBMS
testing tools in terms of bug finding, grammar rule cover-
age and code coverage. ParserFuzz detects 81 previously-
unknown bugs in total across 5 popular DBMSs, where all
bugs are confirmed and 34 have been fixed.

1 Introduction

Database Management System (DBMS) stores, retrieves and
manages data in a structured manner. They are extensively
used in real-world data-intensive applications to drive trillions
of Internet services and electronic devices [39, 40, 42, 44–46].
Any DBMS bugs will affect a large number of users [8,35,36].

Recent efforts on DBMS testing [2, 14, 47, 67] can be
classified into two categories: generation-based testing and
mutation-based grey-box fuzzing. SQLsmith [47] is the most
popular generation-based testing tool to date. It generates
SQL queries based on pre-defined query templates. These
templates are manually crafted by SQLsmith’s developers,
and can help generate high-quality SQL queries [57]. An-
other representative generation-based tool is SQLancer+QPG,

where QPG represents query plan guidance [2]. SQLancer+QPG
adopts DBMS query plan information as the feedback to
guide the query generation process, and is designed to de-
tect logic errors from the DBMS code. Similar to SQLsmith,
SQLancer+QPG also generates query sequences based on pre-
defined SQL templates. However, due to the significant differ-
ence between multiple DBMS dialects, these pre-defined SQL
templates cannot cover unique, complicated features from dif-
ferent DBMS systems [21,38]. Further, as every DBMS keeps
evolving, developers of SQLsmith and SQLancer+QPG have to
track all recent updates and manually insert new templates.

Recently, coverage-guided grey-box fuzzing is widely used
to detect memory errors from a wide-range of applications,
including but not limited to operating systems [7, 12, 17, 27,
62], web browsers [11, 13, 37, 63] and compilers [6, 9, 28].
To conduct grey-box testing, a fuzzing tool, or fuzzer, first
instruments the target program to record code coverage. Then,
it generates a large number of random inputs and executes
the target program. If one input triggers new code coverage,
the fuzzer will treat the input as interesting and save it to a
queue. By accumulating interesting inputs from the fuzzing
queue, the fuzzer aims to trigger as many code logic from
the target program as possible. Eventually, some inputs will
trigger memory errors in the target program.

Researchers have adopted grey-box fuzzing to test DBMS
systems [6, 14, 61, 67]. For example, Squirrel performs
syntax-preserving mutation and semantics-guided instanti-
ation to generate high-quality SQL queries [67]. It adopts
code coverage to guide the input mutation and scheduling.
However, the diversity of Squirrel-generated queries heavily
relies on the quality of provided seed corpus [21, 27, 31]. The
more features the seed corpus covers, the more diversity the
mutated inputs could trigger, and therefore, the more bugs
can be discovered. If the input corpus misses one grammar
feature, any bug related to this feature would be missed by
Squirrel. However, collecting a feature-rich seed corpus is a
challenging task. The unit test suites provided from the tar-
get program may only cover parts of all features. Although
Squirrel can generate queries with high validity rate, it can



hardly explore the vast SQL features provided by various
DBMS dialects. Therefore, how to effectively explore the vast
syntax features in various SQL dialects is the key challenge
to achieve efficient fuzzing.

A parser generator reads the grammar rules from a syntax
definition file, and then leverage the grammar rules to a source
code that can analysis any inputs according to the defined
syntax rules [15, 29, 30]. If parsing successfully, the parser
source code would transform the input into a parser tree,
where the tree nodes represent the parsed tokens coming
from the raw input. The developer is free to further transform
the parser trees into their software internal structures. The
main purpose of the parser is to verify the syntax correctness
of the provided input, and then leverage the raw input into
the program’s internal structure for further operations. In our
study, most of the popular DBMSs today use parser generators
to define their SQL grammar rules [43, 48–52], including all
the DBMSs we tested in this paper. Intuitively, these grammar
rules provided for the parser generators would cover all the
possible syntax regulations for the target programs, because
the parsers work as verifiers to check all input sources in the
software front-ends. Therefore, the grammar definition files
for the parser generators can serve as an uniform interface
that we can use to explore the ground truth SQL grammar
rules defined for the dedicated DBMSs.

In this paper, we introduce a new query generation and
mutation method, that directly learn and apply the grammar
rules from the DBMSs’ built-in parsers to the fuzzing process.
Instead of using the grammar rules from DBMS parsers to
simply verify the input queries, we use the parser rules to
generate and mutate random query statements for fuzzing.
By traversing all the grammar rules defined for the DBMS
built-in parsers, the generated queries could saturate all the
interesting syntax features supported by the original DBMS
programs. Furthermore, we combine the code coverage feed-
back from the traditional grey-box fuzzing to guide the query
grammar-based mutation. If the fuzzed query triggers a new
code coverage from the DBMS program, we save the parsed
syntax tree to the fuzzing queue for further query mutations.

We implemented a new fuzzing tool, ParserFuzz, that au-
tomatically constructs interesting query sequences based on
DBMS built-in parser rules, and then uses the code coverage
feedback to guide the query syntax rule-based mutation. We
tested ParserFuzz on 5 most popular open-source DBMSs,
MySQL, SQLite, CockroachDB, TiDB and MariaDB. ParserFuzz
found 81 bugs from all 5 DBMSs, which contain 29 segmen-
tation faults and 52 assertion failures. ParserFuzz achieves
the largest detected bug numbers, the highest grammar cover-
age and code coverage compared to the other state-of-the-art
DBMS testing tools in our evaluations.

In summary, this paper makes the following contributions.
• We propose a novel method for automatic SQL-query

generation and mutation, which utilizes existing syntax
rules of DBMS parsers to randomly generate feature-rich

statements, without relying on high-quality seed corpus.
• We utilize code coverage as the feedback to select the

promising grammar rules for generating new queries.
The coverage-guided rule-based generation will help ex-
plore deep code logic of complicated DBMS programs.

• We evaluate ParserFuzz on 5 real-world DBMSs and
find 81 new bugs. We demonstrate that our tool cov-
ers more grammar features, which helps trigger more
memory errors than state-of-the-art DBMS testing tools.

Open Source. We will release the source code of ParserFuzz
at https://github.com/SteveLeungYL/parserfuzz_c
ode to help protect popular DBMS systems.

2 Background & Challenges

2.1 An Example Memory Error from MySQL
Listing 1 shows a query that triggers a segmentation fault on
the release version of MySQL DBMS (version 8.0.33). This
bug was detected by our newly proposed tool, ParserFuzz,
without any seed corpus that explore on the similar syntax.
The proof of concept (PoC) is constructed with two simple
lines of SQL queries. The first query creates a new temporary
table named t0 with a column called c1. Temporary tables
are only available within the current server-client connected
session, and the data in the temporary table would be auto-
matically dropped when the client exits the connection. In
this PoC, the CREATE TABLE statement appends an index to
the table to enhance the speed of data retrieval. Interestingly,
the created index is a composite index, which means the cre-
ated index is constituted with two different parts of data. The
first part contains one single column. The second part is a
functional key parts index, often referred as functional index.
Different from normal index, where only columns are consid-
ered as keys. Functional index uses query expression as the
indexed content, and the indexed expression receives a speed
up. Functional index is useful when the DBMS user constantly
employs the same SQL expression to search for table data.
After caching the expression into index, the DBMS can speed
up the repeated expression handling in the data retrieval. In
the PoC of Listing 1, the index i2 contains a mixed usage of
normal index and functional index. In the second statement,
the PoC promptly looks for the created index information.

When running this PoC on the latest version of
MySQL (version 8.0.33), the targeted DBMS encounters
NULL pointer dereference crash in the temporary table han-
dling logic. The problem arises from the mixed usage of
normal index and functional index, which confuses the tempo-
rary table creation handling, and the expression c1 + c1 is not
correctly saved in the index creation. When the SHOW INDEX
query searches for the stored index information, it fails to find
the columns saved into the functional index (being NULL),
and therefore results in a crash. The PoC can be easily
weaponized to upload to any online MySQL services and con-
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01 CREATE TEMPORARY TABLE t0(c1 INT, INDEX i2(c1, (c1+c1)));
02 SHOW INDEXES IN t0;

Listing 1: A segmentation fault crashing from MySQL due to the
mixed usage of normal index and functional index.

duct Denial-of-Service attack. We have reported the bug to
the MySQL developers. The developer has confirmed the bug
and marked the bug severity as Serious.

The PoC shown in Listing 1 is interesting because, al-
though previous works like Squirrel [67] have been ex-
tensively tested on MySQL, none of the previous tools found
this bug. The key to uncovering this bug is to combine nor-
mal index creation and functional index creation in a sin-
gle CREATE TEMPORARY TABLE statement. However, the inter-
nal representation of Squirrel doesn’t supports using ex-
pressions as index keys, nor does Squirrel includes func-
tional index in its input seeds. Therefore, not matter how
hard Squirrel mutates on its input, it will never detect this
bug. Furthermore, there are only one single instance in the
MySQL official unit test that explores the combined use of
normal index and functional index. And the unit test is not
constructed with temporary table. As such, the DBMS tester
is easy to overlook this one line unit test example and thus
not able to include any queries that combine these two index
types. Therefore, all the previous testing tools missed this bug.
ParserFuzz automatically learns all the syntax features from
the ground truth MySQL syntax definition file. Without rely-
ing on any pre-existing unit test corpus, it can craft queries
that explore the rarely tested feature such as combined use
of normal index and functional index. As a result, our tool
ParserFuzz finds this bug in 10 hours of MySQL fuzzing.

2.2 Generation-based DBMS Testing Tools
There are some existing DBMS testing tools that relies on
SQL templates to generate the SQL queries for testing. The
most well-known generation-based query testing framework
is SQLsmith [47]. Since its release, SQLsmith has been used
extensively to test on different DBMSs, and found many bugs
from the DBMS softwares [57]. However, the hand-written
query templates are limited in covering the syntax elements
from the DBMS syntax rules, and cannot fit in the complex
and ever-changing SQL dialects defined in different DBMS
softwares. Therefore, the queries generated from SQLsmith
cannot cover all the SQL features from the DBMSs, and lack
the capability to detect deep and unique bugs that are dedi-
cated to the DBMSs’ feature sets.

There is another generation-based DBMS testing tool
called SQLancer [24], that focuses on detecting DBMS logic
errors from DBMS systems [32–34]. DBMS logic bugs are
code logic errors that cause the DBMS to return incorrect
results. Unlike tools that detect memory errors, SQLancer
doesn’t generate arbitrary types of random queries for fuzzing.
Instead, it focuses only on generating queries that matching

its oracles’ needs. In essence, SQLancer prefers to generate
multiple syntactically different, but functionally equivalence
queries, and verify their results to ensure the query execu-
tion correctness. SQLancer introduces a few SQL oracles for
this purpose such as NoREC, TLP and PQS, where each shares
a distinct SQL pattern to match [32–34]. With its latest con-
figuration SQLancer+QPG [2], it uses the DBMS query plan to
guide its query generation in order to stress test the DBMS
query optimization logic. However, because SQLancer and
SQLancer+QPG restricted themselves to generate queries that
align with the oracles’ patterns, they lack the query diversity
needed to explore all the grammar features provided by the
DBMSs. Therefore, neither SQLancer nor SQLancer+QPG are
suitable to detect DBMS memory corruption bugs that are
arise from interesting but rarely tested syntax features.

There are several other generation-based DBMS testing
tools that aim to detect various kinds of bugs from the
DBMSs [23, 26, 58]. Some existing works treat the SQL
query generation as a boolean satisfiability problem, and use
SAT solvers to produce queries that achieve high correctness
rate [1, 25]. Chandra et al. extend the database construction
technique to boost the efficiency of DBMS query testings [5].
Bruno et al. propose to generate queries based on Cardi-
nality Constraints [4]. On the topic of performance issues,
researchers also propose several tools to detect performance
bugs in the DBMS [3, 18, 65]. APOLLO runs the same query on
different versions of the same DBMS to detect performance
regression bugs [16]. AMOEBA generates functional equivalence
queries and checks whether they finish in a similar response
times [22]. Lastly, regarding logic errors, differential testing
is employed to detect logic bugs in DBMSs [38]. These test-
ing tools check the result consistency from identical queries
when running them on different DBMSs [10] or running them
in one DBMS but with different versions [64]. If any result
discrepancy is observed, a potential logic bug is found.

2.3 Mutation-based DBMS Testing Tools

Squirrel is one of the state-of-the-art mutation-based query
testing tools. It supports testing 4 DBMSs including SQLite,
PostgreSQL, MySQL and MariaDB [67]. The core idea of
Squirrel is two-folded. The first contribution to transform
any inputted queries into its internal representation (IR).
Based on the generated IR, Squirrel performs type-based
mutations on the IR tree nodes, in order to mutate the parsed
queries but preserve the mutated queries’ syntactic correct-
ness. The second contribution is to build a dependency graph
for the query arguments such as table names and column
names. By resolving the dependency graph, Squirrel fills in
the query arguments and assigns the parsed query with special
semantic meanings. However, even though Squirrel uses an
internal parser to convert the raw query input into its IR, it still
heavily depends on the provided seed corpus to shape the mu-
tated queries. If the given seeds lack a specific SQL grammar,
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Squirrelwill not generate any inputs to explore this grammar
feature. Given the complexity of the DBMS SQL dialects, it
is challenging for Squirrel to cover all the interesting fea-
tures from its seed corpus. Therefore, the DBMS features that
Squirrel explores are limited. Additionally, DynSQL [14] im-
plements another DBMS fuzzing tool. It samples the DBMS
execution states after every query execution, aiming to gather
more real-time feedback from the DBMS to improve the gen-
erated queries’ correctness rate. The sampled query state later
guides the query generation, helping to sidestep some seman-
tic errors caused by the previous unsuccessful data creations
or modifications. The idea of DynSQL is complementary to
our work. While DynSQL focuses on generating queries with
higher correctness rate, ParserFuzz strives to generate more
diverse queries that can explore more rarely tested features.
There are a few other mutation-based fuzzing tools for de-
tecting DBMS crashing bugs [19, 59]. For example, RATEL
targets enterprise-level DBMSs such as GaussDB [60]. LEGO
instantiates the query statements with type-affinity aware-
ness for higher query correctness rate [20]. Unfortunately,
DynSQL, RATEL or LEGO have not released their source code,
which means it is not feasible to compare our work to theirs.

2.4 Parser Generators in the DBMSs

A parser generator program takes a grammar definition file
as input and generates source code that parses any input
characters according to the rules defined in the grammar
file [15, 29, 30]. Most parser generators use a syntax notion
type similar to the Backus–Naur form (BNF) [29, 54, 55]. By
defining the grammar rules in the grammar definition file, de-
velopers can implement a parser with high runtime efficiency
and minimal grammar rule ambiguities. A more detailed ex-
ample of grammar definition will be elaborated in §3.1. The
primary purpose of the parser generator is to verify whether
the input stream matches the defined syntax rules. If matched,
the parser enables the developer to transform the raw input
into application’s internal structure.

Most of the DBMSs known today use parser generators
to define their SQL grammar rules [43, 48–52]. For ex-
ample, MySQL, MariaDB and PostgreSQL use bison as their
parser generator [49–51]. CockroachDB and TiDB use a special
GoLang implemented counterpart of the yacc parser genera-
tor [48, 52, 56]. The goyacc used by CockroachDB and TiDB
shares a grammar define notation similar to the bison one,
with both closely aligned with the standard BNF. SQLite uses a
custom parser generator called Lemon, which was invented by
the same author who originally developed SQLite [43]. It adds
in a few improvements based on the grammar notations of
bison or yacc, but overall maintains a similar grammar defini-
tion form. In summary, the vast usage of parser generators in
DBMSs allows us to observe the ground truth grammar rules
dedicated to different DBMS softwares, and offers us a uni-
form interface to easily leverage these pre-defined grammars

Rule-based Query 
Generator

Query 
Instantiation

ParserFuzz

DBMS
Code Coverage

Fuzzing Queue
SQL Syntax 

Definition File Crashes

Figure 1: Overview of ParserFuzz. It automatically extracts SQL
features from DBMS-specific syntax definition files, and utilizes
code coverage to select promising rules for query generation.

for the DBMSs’ fuzzing purpose.

3 Design of ParserFuzz

To generate diverse sets of queries that explore all possible
grammar rules, we introduce parser grammar rule-based query
generation. The query generation doesn’t rely on any prior
query seeds, but instead automatically constructs query state-
ments directly based on the grammar rules defined for the
parser generator. Additionally, by traversing all the parser
rules defined in the parse generator, we can explore all the
possible syntax features tailored for the DBMS. To steer the
fuzzer towards combining different interesting syntax fea-
tures, we incorporate code coverage feedback to guide the
query mutation. The combination of parser rule-based query
generation and code coverage feedback enables ParserFuzz
to generate diverse and complex queries that can effectively
find DBMS memory corruption bugs.

System overview. Figure 1 shows an overview of our tool
ParserFuzz. ParserFuzz is the first tool that directly gen-
erates SQL query statements based on DBMS SQL gram-
mar definition file, and it guarantees exploring all the gram-
mar rules defined in the DBMSs. Unlike previous fuzzers,
ParserFuzz doesn’t require any queries as fuzzing seeds. In-
stead, all queries are produced directly from the parser rule-
based query generator §3.1. These generated query are then
populated with SQL arguments using the validity-oriented
instantiation algorithm §4. All the produced queries are
executed in the DBMS afterwards. In the current design,
ParserFuzz produces SQL query sequences according to
the following principle: it firstly generates 3 CREATE TABLE
statements, followed by 3 INSERT statements, 2 CREATE INDEX
statements, 10 randomly generated statements regardless of
the statement types, and concludes with 10 SELECT statements.
ParserFuzz will clean up the database contents after one
query sequence finishes its execution. If one query statement
activates a new code branch from the DBMS, ParserFuzz
will save the statement’s syntax tree to the fuzzing queue.
In the next round of generating new statement, ParserFuzz
offers 50% chances to mutate the queries from the fuzzing
queue §3.3. If any segmentation fault or assertion failure are
detected during execution, we will save the complete bug-
triggering query sequence for further analysis.

4



01 simple_select:
02 SELECT_SYM SCONST
03 {/*extra developer defined logic...*/}
04 | SELECT_SYM distinct_clause target_list from_clause
05 {/*extra developer defined logic...*/}
06 | SELECT_SYM distinct_clause target_list from_clause
07 where_clause
08 {/*extra developer defined logic...*/}
09 ;
10
11 distinct_clause:
12 DISTINCT_SYM {/*extra developer defined logic...*/}
13 ;
14
15 target_list:
16 target_elem {/*extra developer defined logic...*/}
17 | target_list ',' target_elem
18 {/*extra developer defined logic...*/}
19 ;
20
21 /* other grammar rules ... */

Listing 2: Example grammar definition rules for Bison

01 static const SYMBOL symbols[] = {
02 /* SQL keywords (by alphabetical order) */
03 {SYM("\&\&", AND_AND_SYM)},
04 {SYM("<", LT)},
05 {SYM("<=", LE)},
06 //...
07 {SYM("SELECT", SELECT_SYM)},
08 {SYM("DISTINCT", DISTINCT_SYM)},
09 //...
10 };

Listing 3: Example keyword mappings from the lexer

3.1 Parser Rule-based Query Generation

Exploring the vast and rarely tested SQL features from the
DBMS is key to find more interesting bugs during DBMS
fuzzing. The DBMS SQL rule definition file defines the com-
plete set of the grammar rules permitted for the SQL dialect.
Listing 2 shows an example of SQL grammar rule definition.
This grammar notation is adopted by parser generators such
as yacc, bison and go-yacc, and is further used by MySQL,
CockroachDB and TiDB. By convention, all lowercase sym-
bols in Listing 2 represent non-terminal keywords. A non-
terminal keyword means the current keyword can be further
extended by sub-rules. For instance, the first line in Listing 2
defines the top non-terminal keyword simple_select. Line
2-9 define the sub-rules that can be expanded by the keyword
simple_select. Additionally, all uppercase symbols in List-
ing 2 represent terminal keywords. A terminal keyword is
one without any attached sub-rule. They can directly map to a
token in the input stream. Listing 3 shows an example token
mapping. Alternatively, a terminal keyword can represent ar-
guments such as table and column names or as constant values
such as string literals. The SCONST keyword used in Listing 3 is
an example for representing any single quoted string constant
in the SQL language. The parser grammar is free to define its
grammar entry from any non-terminal keyword. The parser
will recursively match the non-terminal keywords’ grammar
rules to verify the grammar correctness. A successfully parsed
query traverses the defined grammar rules, constructing a tree-

01 -- match the first rule from simple_select
02 SELECT 'abc';
03 -- match the second rule from simple_select
04 SELECT DISTINCT c1 FROM t0;
05 -- match the third rule from simple_select
06 SELECT DISTINCT c1 FROM t0 WHERE TRUE;

Listing 4: Querie examples matching the syntax rules in Listing 2

01 a_expr:
02 a_expr '+' a_expr
03 | a_expr AT_SYM TIME_SYM ZONE_SYM a_expr
04 | a_expr COLLATE_SYM any_name
05 | /* other grammar rules ... */
06 ;

Listing 5: A keyword that recursively references itself

like structure where every tree node represents a token from
the query stream. For instance, if we assume the top keyword
simple_select is the entry point from the grammar syntax
definition, Listing 4 shows some example queries that can be
successfully parsed by these grammar rules.

Although the main goal of the SQL parser is to verify SQL
inputs, the grammar rules can be easily tuned to serve other
purposes. Most interestingly, instead of matching grammar
rules from the inputs, it is feasible to generate query state-
ments from the grammar definition by randomly choosing
which grammar rule to apply. Specifically, starting from the
grammar entry point, we can randomly select a grammar rule
to commit every time we need to resolve a non-terminal key-
word. By choosing a different set of grammar rules to apply
when traversing the syntax, we can generate various forms
of queries for testing. Moreover, we can easily ensure the
syntax correctness of the generated query because it still ad-
heres to the defined syntax rules. Furthermore, to provide the
generated queries with semantic meanings, we label all the
SQL arguments in the grammar rules, such as table names and
column names, addition with constant values such as integers
and string literals. These SQL arguments and constant val-
ues will later be passed to the validity-oriented instantiation
algorithm to fill in the concrete values §4.

Because the grammar logics defined for the parser genera-
tor serves as the front-end of the DBMS processing pipeline,
the logic represents the ground truth of the grammar rules
a DBMS can support. More importantly, the grammar defi-
nition file includes all the grammar features that the DBMS
currently supports. By thoroughly scanning all the grammar
rules defined in the grammar file, we can generate queries
that saturate the interesting syntax features dedicated to the
DBMS softwares. Additionally, the grammar rule exploration
does not rely on any prior input corpus, reducing the burden
for DBMS testers to gather an input corpus that covers all of
interesting features they care about.
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01 natural_join_type:
02 NATURAL_SYM opt_inner JOIN_SYM /* simple rule */
03 ;
04
05 opt_inner:
06 %empty /* syntax termination */
07 | INNER_SYM /* syntax termination */
08 ;

Listing 6: Example simple rule

01 subquery: '(' simple_select ')' ; /* complex rule */

Listing 7: Example complex rule

3.2 Path Explosion due to Recursive Keyword

Although the BNF notation isn’t as complex as programming
languages such as C/C++, we also face similar issues with
program static analysis when generating new queries from
the grammar rules. The most notable issue is the grammar
path explosion problem. Listing 5 demonstrates an exam-
ple that could lead to grammar path explosion. Most of the
grammar rules defined under the a_expr keyword reference
the top keyword a_expr, which creates a loop in the gram-
mar rule that continuously expands the grammar tree. Given
most of the grammar rules defined in Listing 5 have recur-
sive references, and some rules such as a_expr ‘+’ a_expr
even reference the top keyword twice, the query generation
algorithm might get trapped in this recursive keyword and
never finds an exit. Because a_expr is an important grammar
feature in the DBMS, addressing this grammar path explosion
problem becomes one important task to tackle.

To address this grammar path explosion problem,
ParserFuzz scans through the query grammar files and classi-
fies all the grammar rules into three categories: simple rule,
normal rule and complex rule. Simple rules are any gram-
mar rules that guaranteed to terminate in 2 iterations. List-
ing 6 shows one example. The rule defined under the
natural_join_type keyword contains two terminal key-
words: NATURAL_SYM, JOIN_SYM and one non-terminal key-
word opt_inner. However, all grammar rules defined for
opt_inner definitively lead to rule termination, i.e., they
could be either empty or INNER_SYM. In this case, by choos-
ing the grammar rule NATURAL_SYM opt_inner JOIN_SYM,
ParserFuzz ensures the grammar rule will cease expansion
in 2 iterations. ParserFuzz therefore labels this grammar rule
as simple rule. Complex rules are syntax definitions that lead
to recursive keywords or more intricate grammar expressions.
Apart from the aforementioned case in Listing 5, Listing 7
illustrates another complex rule example, which expands into
an entire sub-select statement within the query expression,
significantly complicating the syntax tree. ParserFuzz auto-
matically labels all grammar rules that recursively reference
keywords as complex rules. User can also manually label
certain complex grammar rules, like the one shown in List-
ing 7. Normal rules are all the other grammar rules excluding

01 table_reference:
02 table_factor /* normal rule, preferred */
03 | joined_table /* complex rule */
04 ;
05
06 table_factor:
07 table_name /* simple rule, preferred */
08 | table_function /* complex rule */
09 ;
10
11 joined_table:
12 /* complex rule */
13 table_reference inner_join_type table_reference
14 /* complex rule */
15 | table_reference outer_join_type table_reference
16 ;

Listing 8: Rule prioritization to resolve path explostion

01 /* interesting query saved in the fuzzing queue */
02 SELECT * FROM t0 INNER JOIN t1 ON t0.c1 = t1.c1;
03 /* the query are mutated to the following */
04 SELECT * FROM t0 OUTER JOIN t1 ON t0.c1 = t1.c1;

Listing 9: Example mutation on saved query

simple rules and complex rules. They represent an uncertain
status of the current syntax rule, where the defined syntax will
neither lead to immediate termination, nor lead to path explo-
sion. User can manually define certain rules as either simple
rules or complex rules to guide the query generation, and
ParserFuzz handles the normal rule sampling automatically.

After categorizing the grammar rules, ParserFuzz uses the
categorization information to guide the query generation. In
the initial stages of the query generation, i.e., within a shal-
low syntax rule iteration depth, ParserFuzz freely selects
grammar rules to commit based on a Multi-Armed Bandit
(MAB) solver described in §3.3. Once the query generation
reaches a specific depth, ParserFuzz prioritizes generating
simple_rule > normal_rule > complex_rule. Listing 8 il-
lustrates one example that uses rule prioritization to early-
exit the query generation. The table_reference keyword
in Listing 8 contains two grammar rules. The first rule is a
normal rule, because the grammar defined in table_factor
could lead to both simple and complex rules. Conversely,
the second rule from table_reference is a complex rule
because all the grammar features specified in join_table re-
cursively reference the top keyword table_reference. There-
fore, once reaching specific depth, ParserFuzz prioritizes nor-
mal rule, table_factor, when resolving table_reference. It
then commits to the rule table_name, which is a simple rule
defined after table_factor, and it concludes the current syn-
tax tree path. This categorization-based parser rule prioritiza-
tion significantly enhances the success rate of generating valid
SQL queries, because it effectively avoids the path explosion
problem during query generation.

3.3 Query Mutation with Coverage Feedback
Lessons learned from previous grey-box fuzzing tools suggest
that code coverage feedback is effective in leading fuzzers
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01 join_table:
02 table_reference INNER_SYM JOIN_SYM table_reference
03 {/*extra user defined logic...*/}
04 | table_reference OUTER_SYM JOIN_SYM table_reference
05 | /* other grammar rules ... */
06 ;

Listing 10: Grammar rules for the example in Listing 9

01 a_expr:
02 /* other grammar rules ... */
03 | STRING_LITERAL /* new coverage 1 time */
04 | a_expr COLLATE_SYM any_name /* new coverage 3 times */
05 | /* other grammar rules ... */
06 ;

Listing 11: Rule prioritization based on code coverage

into finding more bugs. After executing a query, ParserFuzz
gathers the code branches triggered in the DBMS. If a query
triggers a new code branch, ParserFuzz collects the syn-
tax tree that constructs the current executed query into its
fuzzing queue. Because each query acts as an independent
statement in the ParserFuzz generation process, ParserFuzz
does not save concrete values such as arguments or constant
values into the syntax tree. On the next query generation,
ParserFuzz offers 50% chances to mutate the syntax trees
from the fuzzing queue instead of generating a new one. Fur-
thermore, ParserFuzz has the autonomy to choose any tree
nodes from the syntax tree to start its query mutation. To
mutate, ParserFuzz refers to the SQL syntax definition rules,
starts generating new query segments from the randomly
chosen query mutation point, and ultimately replaces the orig-
inal query segments with the newly produced one. Listing 9
shows one such mutation example. Assuming the original
query from Listing 9 triggers a new code coverage from the
DBMS, so it is stored in the fuzzing queue. During the mu-
tation, ParserFuzz selects the join_table node to mutate.
The corresponding grammar rule definition is shown in List-
ing 10, and it covers the query segment t0 INNER JOIN t1.
ParserFuzz then randomly selects another parser rule that
defined under join_table, and commits to the second rule
in Listing 10. The original query from Listing 9 is ultimately
mutated to the form with OUTER JOIN.

In addition of using the code coverage feedback to save
queries for further mutations, ParserFuzz also uses the code
coverage feedback to prioritize more feature-rich grammar
rules that might lead to interesting DBMS behaviors. Certain
grammar rules are doomed to be more feature-rich and inter-
esting than others. For example, in the case of Listing 11, the
first rule on line 3 resolves a constant string, making it less
interesting than the second rule defined in line 4, where the
latter rewrites the default collation for the expression’s return
value. Because the second rule can trigger more unique code
coverage compared to the constant string resolving during the
fuzzing samples, ParserFuzz should favor the COLLATION rule
when formulating a new SQL statement. In ParserFuzz, we
model the grammar rule commitment as an Multi-Arm Bandit

(MAB) problem, where ParserFuzz plays a game every time
it needs to opt for a grammar rule to commit. If the generated
query triggers a new code coverage, all the grammar rules
used to construct the test query receive a reward. The fuzzer’s
objective is to generate queries that maximize the code cov-
erage(reward). However, the information of how much code
coverage is achievable remains limited or unknown at the
time of committing to the grammar rules. Thus, ParserFuzz
needs to conduct an optimized strategy that explores all the
different grammar possibilities while also favoring select-
ing the grammars that induce more captivating outcomes. In
ParserFuzz, we use the ε-Greedy algorithm to address this
MAB problem. The DBMS testers can predetermine an ε

value, which represents the possibility of directly selecting
the grammar rule with the highest known reward. Conversely,
with a 1− ε probability, ParserFuzz randomly selects any
rules defined to maximize the exploration. By default, the ε

value for ParserFuzz is set to be 0.5. But users can adjust the
ε value to suit their needs.

4 Implementation

We implemented ParserFuzz based on the logic-bug detec-
tion tool SQLRight [21]. The query-instantiation logic of
SQLRight can handle a variety of semantic situations. We
removed the oracle interfaces from SQLRight and expanded
the fuzzer to accept any valid SQL statements. Moreover, we
updated SQLRight’s query mutation logic, changing the tool
from a mutation-based fuzzer that relies on input corpus to a
generation-based fuzzer that can generate queries by parsing
grammar definition files. Here, we present more implementa-
tion details for the users that are interested in ParserFuzz.

Rule-based query generator. This generator is built based
on a prototype developed by Cockroach Labs, the developer
of CockroachDB. The prototype is named RSG, standing for
Random Statement Generator [53]. However, this prototype
supports only a limited number of features from the BNF
parser notation. For example, the prototype does not recog-
nize notation %prec, which is reserved for the parser generator
usage. Moreover, the prototype struggles with complex syntax
rules, particularly with recursive keywords. As a result, this
prototype was primarily designed to generate simple and short
DEMO query statements. The grammar definition files pro-
vided to the prototype rarely exceed 15 lines, making the pro-
totype unsuitable for parsing the comprehensively grammar
rules designed for CockroachDB. We enhanced the prototype’s
capabilities to accommodate more complex grammar defi-
nition rules, which includes adding full support for go-yacc
grammar files used in CockroachDB and TiDB, bison grammar
files used in MySQL and MariaDB, and even Lemon grammar
file specifically designed for SQLite. The rule-based query
generator in ParserFuzz can be further extended to support
other grammar definition formats in the future, including the
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support for modern parser generation tool ANTLR.
DBMS coverage instrumentation. We used AFL LLVM
mode to instrument the DBMSs that are written in C or C++
languages [66], including SQLite, MySQL and MariaDB. In ad-
dition, we enlarged the code coverage map size from 64K to
256K. However, we couldn’t find any existing method to apply
branch coverage instrumentation for DBMSs implemented
in GoLang. Therefore, we modified the line coverage instru-
mentation from GoLang built-in library [41], and enhanced
its capability to support branch coverage logging. We then
integrated our custom branch coverage feedback logging in
ParserFuzz when testing GoLang implemented DBMSs such
as CockroachDB and TiDB.

5 Evaluation

We evaluate ParserFuzz on five popular open-source DBMSs,
including SQLite, MySQL, CockroachDB, TiDB and MariaDB.
The evaluation aims to answer the following questions.
Q1. Can ParserFuzz detect real-world DBMS bugs?
Q2. Can ParserFuzz find more bugs than existing tools?
Q3. How does code coverage guide the fuzzing process?
Q4. How do extra syntax rules contribute to bug finding?
Experimental setup. To address Q1, we conduct experi-
ments of ParserFuzz on 5 popular DBMSs, SQLite, MySQL,
CockroachDB, TiDB and MariaDB, and gather all the bugs de-
tected in §5.1. To answer Q2, we compare ParserFuzz to
existing state-of-the-arts in §5.2. Due to the diverse SQL
dialects in different DBMSs, there is no universal DBMS test-
ing tool that covers all the DBMSs we are testing. Therefore,
for each evaluated DBMS, we select the latest open-source
DBMS testing programs that are compatible to the DBMS
as baselines. For SQLite, MySQL and MariaDB, we compare
ParserFuzz against Squirrel, the most advanced grey-box
mutation-based DBMS fuzzer. For CockroachDB and TiDB, we
use the official query generation-based testing tools that are
maintained by the DBMS developer groups, i.e., we test the
customized SQLsmith (SQLsmithC for short) for CockroachDB,
and test go-sqlsmith (SQLsmithG for short) for TiDB respec-
tively. To compare ParserFuzz against traditional bit-flips
mutation-based fuzzer, we select AFL++ to test C/C++ imple-
mented DBMSs and use LibFuzzer to test GoLang imple-
mented ones. In addition, to understand the memory error
detecting capability for DBMS logic bug detectors, we com-
pare ParserFuzz to state-of-the-art logic bug testing tool
SQLancer+QPG. SQLancer+QPG supports testing with SQLite,
CockroachDB and TiDB, and outperforms all other logic bug
detectors including SQLRight [2, 21]. We use NoREC oracle
for SQLancer+QPG when testing with SQLite and CockroachDB.
Because NoREC oracle is claimed to be a better performer over-
all compared to TLP oracle [2]. But we fallback to use TLP
when testing TiDB, because SQLancer+QPG hasn’t supported
testing TiDB with NoREC oracle yet. While the most recent

DBMS fuzzing tool DynSQL [14] supports testing 6 DBMSs
including SQLite, MySQL and MariaDB, it is not open-source,
so we cannot compare our tool to their implementation. For
fuzzing tools that demand input corpus, we use the query li-
braries from the Squirrel repo to serve as the universal input
seeds. To answer Q3, we disable the code coverage feedback
from ParserFuzz, transforming it into a pure random query
generation tool, which noted as ParserFuzz-cov. We compare
ParserFuzz-cov against the full-featured ParserFuzz in §5.3.
Finally, we use the bugs detected to demonstrate the contri-
bution of the diverse syntax elements from ParserFuzz §5.4,
which answers the question of Q4.

We run all evaluations on an Ubuntu 20.04 system. The
machine comes with two 28-cores Intel(R) Xeon(R) Gold
6348 CPUs and 512 GB memory. We target the latest release
versions of the DBMSs at the time when we started the eval-
uation. Specifically, we evaluate SQLite on version 3.41.0,
MySQL on version 8.0.33, CockroachDB on version v22.1.10,
TiDB on version v6.1.7 and MariaDB on version 11.3.

5.1 DBMS Bugs
Due to the resource limitations, we evaluated different
DBMSs over different testing durations. We fuzzed MySQL
with the longest time frame, which lasted 3 months. We further
tested SQLite for 2 months, CockroachDB for 2 months, TiDB
for 1 month and MariaDB for 3 weeks. In total, ParserFuzz de-
tected 81 bugs from all 5 DBMSs, containing 29 segmentation
faults and 52 assertion failures.

A bug summary is presented in Table 1 and Table 2. A seg-
mentation fault indicates a bug that brings down the DBMS
server process, and forces the DBMS client to exit the ongoing
session. An attacker can effectively exploit a segmentation
fault PoC to conduct Denial-of-Service attack on any on-
line DBMS services. An Assertion failure from SQLite and
MySQL implies the provided PoC is reproducible only in debug
build of the DBMS. Although the release build of the DBMS
does not trigger the assertion crash, the failed assertion check
implies that the DBMS operates in an ill-formed state. An
attacker might exploit this ill-formed state to trigger higher im-
pact exploitation. An assertion failure from CockroachDB rep-
resents an unexpected runtime error. The cause can be as fatal
as index out of bounds access, however, CockroachDB au-
tomatically recovers from the error state, and it will discard
the malicious changes and then resume running.

5.2 Comparison with Existing Tools
We compare ParserFuzz with state-of-the-arts on all
5 supported DBMSs, including MySQL, SQLite, MariaDB,
CockroachDB and TiDB. For all experiments, we allocate 5
concurrent processes for each tool to stress-test the DBMSs.
Each evaluation lasts for 24 hours, and we repeat all the ex-
periments 3 times. Figure 2 show the results we collected.
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DBMS ID Description Status Squirrel SQLsmith SQLsmithC SQLsmithG SQLancer+QPG

S
Q
L
i
t
e 1 RETURNNING from ill-formed VIEW fixed (84417bbd) ✗ ✔ - - ✗

2 Unexpected exposed debug function fixed (62114711) ✔ ✔ - - ✗
3 Incorrect byte code conversion fixed (8f637aae) ✗ ✔ - - ✗

M
y
S
Q
L

4 Incorrect sorting optimization fixed (version 8.0.34) ✗ - - - -
5 Incorrect partition condition handling confirmed ✗ - - - -
6 Incorrect partition condition handling confirmed ✗ - - - -
7 Incorrect REGEXP expression handling confirmed ✗ - - - -
8 TEMP TABLE created with ill-formed function index confirmed ✗ - - - -
9 Incorrect CHECK condition handling in CREATE TABLE confirmed ✗ - - - -
10 Incorrect charset conversion confirmed ✗ - - - -
11 Incorrect subquery expression handling confirmed ✗ - - - -

C
o
c
k
r
o
a
c
h
D
B

12 Incorrect temp disk storage internal value fixed (1ee803ee) - - ✔ - ✗
13 Duplicate PRIMARY KEY fixed (3a3123d9) - - ✗ - ✗
14 Missing name resolver to constraint validator fixed (0c58a08d) - - ✔ - ✗
15 Incorrect data type conversion fixed (5cb5d1da) - - ✔ - ✔
16 Incorrect default expression typing and backfill fixed (51005e41) - - ✔ - ✗
17 Out-of-bounds from tuple handling fixed (58ec9687) - - ✔ - ✔
18 Large number as hidden constants fixed (318e352e) - - ✔ - ✔

T
i
D
B

19 Incorrect query parsing logic fixed (8f308ecb) - - - ✗ ✗
20 Compare subquery in SHOW confirmed - - - ✗ ✗
21 Index out of bound access in EXPLAIN fixed (762432b6) - - - ✗ ✗
22 DML panic when CTE exists fixed (25764bc8) - - - ✗ ✗
23 Incorrect expression rewriter optimization confirmed - - - ✗ ✔
24 Recovery non-existing jobs confirmed - - - ✗ ✗
25 Incorrect handling for partial aggregation confirmed - - - ✗ ✗

M
a
r
i
a
D
B

26 Incorrect partition condition handling confirmed ✗ - - - -
27 Incorrect check condition handling in CREATE TABLE fixed (8adb6107) ✔ - - - -
28 Incorrect remove record without match in DELETE confirmed ✗ - - - -
29 Incorrect sub-select optimization confirmed ✔ - - - -

Table 1: New Segmentation Faults detected by ParserFuzz. ParserFuzz detects 81 bugs in total, including 29 crashes and 52 assertion
failures. The Squirrel, SQLsmith, SQLsmithC, SQLsmithG and SQLancer+QPG columns represent whether the referenced tools can theoretically
detect the mentioned bug, ‘✔’ means ‘Yes’, ‘✗’ states ‘No’ and ‘-’ means the tool is not applicable to the target DBMS.

Unique bug numbers. Across all evaluations conducted
on the 5 DBMSs, ParserFuzz detects the highest number of
bugs within 24 hours. As seen in Figure 2a, ParserFuzz de-
tects 4 bugs in total, winning the first place of the evaluation.
Squirrel can also find one new crashing bug from MySQL.
For the new bug detected from Squirrel, we also reported
it to the MySQL developer. In addition, Squirrel identifies 2
crashing bugs in Figure 2m. However, the detected bugs from
Squirrel are old bugs that had already been known to the
developer back in 2019 and 2022 respectively. Despite this,
ParserFuzz records the highest bug count with 3 bugs de-
tected in MariaDB fuzzing. Moreover, as shown in Figure 2e
and Figure 2i, ParserFuzz detects remarkable numbers of
bugs when testing on CockroachDB and TiDB, giving 6 and 4
bugs respectively. Although SQLancer+QPG can detect multiple
logic bugs in TiDB in Figure 2i, it detects less memory errors
than ParserFuzz in all SQLite, CockroachDB and TiDB test-
ings. All baselines tools except SQLancer+QPG do not detect
any issues in SQLite evaluation as shown in Figure 2q, where
ParserFuzz detects 2 bugs within the set time frame.

Grammar edge number. The extensive amount of gram-
mar edge triggered by the ParserFuzz fuzzing is the pri-
mary reason why it can find more memory errors com-
pared to other baseline tools. A grammar edge represents

the possible combinations between two non-terminal key-
words. For example, in Listing 8, a keyword mapping from
table_reference to table_factor represents one edge case,
and table_reference to joined_table represents another.
The upper bound lines display the total possible grammar
edges for each DBMSs’ grammar rules. The grammar edge
coverage plots are presented in Figure 2b, Figure 2f, Fig-
ure 2j, Figure 2n and Figure 2r. While we claim that
ParserFuzz can account for all the grammar edges from the
defined grammar rules, the gaps between ParserFuzz’s gram-
mar edges and the upper bounds indicate the grammar syn-
taxes we intensionally exclude. These syntax features are
omitted primarily because they could corrupt the database
source, forcing the DBMS to reboot or disrupting the DBMS
server-client connection during the fuzzing loop. The ex-
cluded grammars include user modification statements, privi-
lege modification statements, and data read-write lock modi-
fications, among others. DBMS testers can decide whether to
include these syntax elements in their testing. But including
them would likely reduce the DBMS fuzzing speed. While
ParserFuzz captures all the interesting grammar edges in
our evaluation, other tools barely match its performance. The
extra syntax elements learned by ParserFuzz enables more
diverse query generation, resulting in more memory errors
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DBMS ID Description Status Squirrel SQLsmith SQLsmithC SQLsmithG SQLancer+QPG

S
Q
L
i
t
e 1 ‘pExpr->affExpr==OE_Rollback ...’ fixed (e9543911) ✗ ✗ - - ✗

2 sqlite3_result_blob, ‘n>=0’ fixed (ab3331f4) ✗ ✔ - - ✗
3 ‘sqlite3VdbeMemValidStrRep(pVal)’ fixed (3e2da8a7) ✗ ✗ - - ✗

M
y
S
Q
L

4 ‘escape_arg != nullptr’ fixed (version 8.2.0) ✗ - - - -
5 ‘m_alter_info->requested_lock’ confirmed ✗ - - - -
6 ‘has_error == thd->get_stmt_da()->is_error()’ confirmed ✗ - - - -
7 check_set_user_id_priv, ‘0’ fixed (version 8.0.35) ✔ - - - -
8 ‘is_prepared() && !is_optimized()’ confirmed ✗ - - - -
9 MoveCompositeIteratorsFromTablePath, ‘false’ confirmed ✗ - - - -

10 ‘!thd->lex->is_exec_started()’ confirmed ✗ - - - -
11 ‘!sl->order_list.first’ confirmed ✔ - - - -
12 ‘m_return_field_def.auto_flags == Field::NONE’ confirmed ✗ - - - -
13 ‘m_relaylog_file_reader.position() == m_rli->...’ confirmed ✗ - - - -
14 ‘ha_alter_info->handler_flags ...’ confirmed ✔ - - - -
15 ‘!thd->lex->is_exec_started() || thd->lex ...’ confirmed ✗ - - - -
16 ‘!thd->in_sub_stmt’ confirmed ✗ - - - -
17 ‘is_prepared()’ confirmed ✗ - - - -
18 ‘thd->is_error()’ fixed (79eae6a2) ✗ - - - -
19 ‘inited == NONE || table->open_by_handler’ confirmed ✔ - - - -
20 ‘is_nullable()’ confirmed ✗ - - - -
21 ‘!is_set()’ confirmed ✗ - - - -
22 ‘m_deque == other.m_deque’ confirmed ✔ - - - -

C
o
c
k
r
o
a
c
h
D
B

23 unsupported comparison operator fixed (7b473a8f) - - ✔ - ✔
24 input to ArrayFlatten should be uncorrelated confirmed - - ✔ - ✔
25 an empty end boundary must be inclusive confirmed - - ✗ - ✔
26 runtime error: index out of range confirmed - - ✗ - ✔
27 unexpected error from the vectorized engine fixed (8d1865fd) - - ✗ - ✔
28 tuple length mismatch confirmed - - ✗ - ✗
29 use of crdb_internal_vtable_pk column not allowed fixed (5cc456bb) - - ✗ - ✗
30 top-level relational expression cannot have outer columns confirmed - - ✗ - ✗
31 cannot map variable 7 to an indexed var confirmed - - ✗ - ✗
32 expected *DString, found tree.dNull fixed (6eabc2f3) - - ✗ - ✗
33 invalid memory address or nil pointer dereference fixed (b4d5b0b8) - - ✔ - ✗
34 aggregate function is not allowed in this context fixed (1c8dd156) - - ✗ - ✗
35 invalid memory address or nil pointer dereference fixed (de8a3c77) - - ✔ - ✗
36 expected subquery to be lazily planned as routines fixed (9f319ddb) - - ✔ - ✗
37 tuple contents and labels must be of same length: [], [alias_0] confirmed - - ✗ - ✗
38 unhandled type *tree.RangeCond fixed (0d647800) - - ✗ - ✗
39 referenced descriptor ID 1: descriptor not found confirmed - - ✗ - ✗
40 invalid datum type given: inet, expected int fixed (ff87db04) - - ✗ - ✗
41 unexpected statement: *tree.SetTracing confirmed - - ✗ - ✗
42 cannot overwrite distribution ... confirmed - - ✗ - ✗
43 no output column equivalent to 6 fixed (b9b8da67) - - ✔ - ✔
44 index out of range [0] with length 0 (in function handling) confirmed - - ✗ - ✗
45 unrecognized relational expression type: alter-table-unsplit-all confirmed - - ✗ - ✗
46 schema change PostCommitPhase, index out of range [1] fixed (f0dede19) - - ✗ - ✗
47 generator functions cannot be evaluated as scalars confirmed - - ✗ - ✗
48 could not parse "1 sec" as type bool: invalid bool value confirmed - - ✗ - ✔
49 SetAnnotation(), index out of range [4] with length 1 fixed (c6cf5189) - - ✗ - ✗
50 locking cannot be used with virtual table confirmed - - ✗ - ✗
51 no known encoding type for array confirmed - - ✔ - ✗
52 zero transaction timestamp in EvalContext confirmed - - ✗ - ✗

Table 2: New Assertion Failures detected by ParserFuzz. ParserFuzz detects 81 bugs in total, including 29 crashes and 52 assertion failures.
The Squirrel, SQLsmith, SQLsmithC, SQLsmithG and SQLancer+QPG columns represent whether the referenced tools can theoretically detect
the mentioned bug, ‘✔’ means ‘Yes’, ‘✗’ states ‘No’ and ‘-’ means the tool is not applicable to the target DBMS. Assertion failure for
CockroachDB represents the bug that CockroachDB returns unexpected error. But the bug would not crash the whole CockroachDB process.

reported than the baseline tools.

Code coverage. ParserFuzz reaches the highest DBMS code
coverage across all 5 DBMSs’ experiments. The code cover-
age plots are shown in Figure 2c, Figure 2g, Figure 2k, Fig-
ure 2o and Figure 2s. Notably, ParserFuzz doesn’t rely on

any input corpus to reach this level of code coverage, spar-
ing the efforts from the DBMS testers to gather interesting
queries as input seeds.

Query correctness rate. The query correctness rate is illus-
trated in Figure 2d, Figure 2h, Figure 2l, Figure 2p and Fig-
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Figure 2: Evaluation of different testing tools on MySQL, CockroachDB, TiDB, MariaDB and SQLite.

ure 2t. ParserFuzz, along with other mutation-based fuzzing
tools, generally has a lower query correctness rate com-
pared to generation-based tools that rely on hand-written tem-
plates. For example, SQLancer+QPG, SQLsmithG and SQLsmith
all achieve high query validity in their own tests, with
SQLsmithC being an exception. However, these generation-
based tools lack the flexibility to produce diverse query state-
ments, because all the generated queries patterns must be

hand-written by the developers, making the process labor-
intensive. Therefore, ParserFuzz can find the highest number
of bugs by generating more diverse queries and saturating all
the grammar rules defined for the parsers.
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Overall, ParserFuzz can find more memory errors than
other testing tools, because it thoroughly examines all the
grammar rules defined in the parser, and can reach the high-
est number of grammar coverage upon testing. Although
most generation-based DBMS testers can guarantee a high
query correctness rate, the requirement for hand-written
SQL templates limits their scalability, resulting in less flex-
ible solutions in the end.

5.3 Contribution of Coverage Feedback

To understand the contribution of code coverage, we intro-
duce an alternative configuration of ParserFuzz, labeled as
ParserFuzz-cov, to evaluate the fuzzer performance without
code coverage feedback. ParserFuzz-cov discards all code
coverage information obtained from the DBMS execution,
transforming ParserFuzz into a pure random query genera-
tion tool. We compare ParserFuzz with ParserFuzz-cov in
all the 5 supported DBMSs. The results are embedded in the
same plots we used to evaluate on different tools in Figure 2.
Unique bug numbers. Without code coverage guidance, the
pure generation-based testing tool ParserFuzz-cov degrades
significantly in bug finding capability. It detects 6 bugs, as op-
posed to 19 bugs detected by ParserFuzz across all DBMSs.
The largest difference occurs in the CockroachDB evaluation
in Figure 2e. ParserFuzz detects 6 bugs in total, but without
code coverage guidance, ParserFuzz-cov finds none.
Grammar edge coverage. Interestingly, even if ParserFuzz
and ParserFuzz-cov both share the same grammar definition
file, ParserFuzz achieves a slightly higher grammar edge cov-
erage compared to ParserFuzz-cov. The code coverage feed-
back aids ParserFuzz in exploring hard-to-triggered query
syntaxes, thereby uncovering more interesting syntax ele-
ments which are absent in the pure query generation.
Code coverage. ParserFuzz achieves higher code coverage
than ParserFuzz-cov as anticipated. Simply covering all syn-
tax elements from the grammar definition file doesn’t provide
a complete picture. But smartly combines different elements
together to form different interesting contexts is also crucial
for generating more interesting test cases. Code coverage feed-
back guides the fuzzer to gradually accumulate interesting
syntax elements together in the fuzzing queue. The various
combinations between different DBMS features lead to more
unexpected SQL contexts for the DBMS handling logic, and
eventually lead to more bugs detected.

The code coverage feedback accumulates the interesting
syntax features discovered from the grammar rule defini-
tion file, and it creates more interesting feature combination
contexts. It helps ParserFuzz to achieve higher code cov-
erage, and eventually leads to more bugs detected.

5.4 Contribution of Diverse Syntax Features

To demonstrate how vast query syntaxes enhance bug-finding,
we refer to Table 1 and Table 2 to show the benefits. Assuming

01 RECOVER TABLE BY JOB 0;

Listing 12: A one-line query that crashes TiDB, which aims to
recover a table from a non-existing DDL JOB ID.

infinite resources can be allocated, the columns of Squirrel,
SQLsmith, SQLsmithC, SQLsmithG and SQLancer+QPG in Table 1
and Table 2 indicate whether each bug could theoretically be
detected by referenced tools. Given the input corpus and In-
ternal Representation (IR), Squirrel can only detect 8 out of
37 bugs that ParserFuzz found. SQLsmith can detect half of
the bugs reported by ParserFuzz (3 out of 6). SQLsmithC can
detects 13 out of 37 bugs from CockroachDB. SQLsmithG can
detect none of the bugs from ParserFuzz. SQLancer+QPG can
detect 11 out of 50. The diverse syntaxes enable ParserFuzz
to explore more interesting features from the DBMSs, and
trigger more interesting bugs that are overlooked by these
baseline tools. Next, we present two case studies to demon-
strate the uniqueness of bugs detected by ParserFuzz.

One-line query that crashes TiDB. Listing 12 presents
a unique bug from TiDB. The PoC is surprisingly simple,
consisting of just one line of SQL query. But the sim-
ple PoC crashes the TiDB query executor, and results in
an immediate loss of connection between the TiDB server
and client. The PoC attempts to recover a table that had
been previously dropped from the database. A more com-
monly use case is to directly recover the table by its table
name, i.e., using RECOVER TABLE table_0; to bring back the
deleted table table_0. However, in conner cases where the
DBMS user has created another table that share the same
name as the deleted one, TiDB offers an alternative form of
the RECOVER statement, as shown by Listing 12, that uses
DDL JOB ID to recover the table that were previously re-
moved. The DDL JOB ID information can be fetched by using
the ADMIN SHOW DDL JOBS; statement, where the DDL JOB ID
saves the unique ID for all Data Definition Language (DDL)
after their executions. Interestingly, the DDL JOB ID value can
never be 0. But the parser from TiDB never checks the value
from the PoC, and the value DDL JOB ID equals 0 is success-
fully set in the TiDB backend. In this case, TiDB interprets
the statement as RECOVER TABLE table_name and then call
the getRecoverTableByTableName function. Unfortunately,
the table name variable is remain uninitialized, resulting in a
nil pointer dereference bug from TiDB and crashes the TiDB
worker process. This bug is interesting and was never de-
tected before because the RECOVER TABLE BY JOB statement
has been rarely tested. Since the feature introduced after
TiDB version 3.0, there are only 13 instances in the TiDB unit
tests reference this feature. Furthermore, all the unit tests
are constructed with pre-defined or fixed DDL JOB ID, which
are not helpful to trigger this bug. Additionally, the official
query generation-based testing tool from the TiDB developer,
SQLsmithG, does not support this grammar feature in its query
generation templates. Our tool ParserFuzz directly parses the
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01 CREATE TABLE IF NOT EXISTS t0 (c1 INT) PARTITION BY
02 HASH(c1);
03 ALTER TABLE t0 CHECK PARTITION ALL FOR UPGRADE;
04 ALTER TABLE t0 ORDER BY c1;

Listing 13: A MariaDB crash that corrupts the database source.

grammar rule definition file designed for TiDB, and automati-
cally recognizes the RECOVER TABLE BY JOB syntax grammar.
ParserFuzz then generates the RECOVER TABLE BY JOB state-
ment, and fills in the DDL JOB ID with arbitrary integer, such
as value 0, and eventually triggers this bug.

A database corruption bug from MariaDB. Listing 13
shows a segmentation fault PoC from MariaDB DBMS. The
CREATE TABLE statement creates a table t0 with one column
c1. The table is partitioned by HASH(c1). Table partitioning
is used to split one table data into multiple subsets, and store
them individually to ease their managements or speed up
their access speed. The PARTITION BY HASH directive tells
the DBMS to handle the data partitioning, and make sure
the data are distributed evenly in the split partitions. The
second statement runs ALTER TABLE CHECK PARITION on the
just created table. It verifies whether the created partitions
contain any errors. The additional syntax FOR UPGRADE checks
if the current partitions are compatible with the currently
running MariaDB version. Right after the partition checking,
the third statement modifies the table t0 and reorders the
table contents based on the data in column c1. By running
all three statements together, MariaDB crashes with corrupted
memory access. What’s worse, the PoC also corrupts the
DDL_LOG section from the database source, causing future
MariaDB crashes whenever MariaDB accesses this database.
We have reported the PoC to the MariaDB developers and they
are working on the patch.

This bug can only be detected by ParserFuzz in our eval-
uation. The crucial step in triggering this bug is to com-
bine CHECK PARTITION ALL with FOR UPGRADE, and then call
ALTER TABLE immediate after. However, the syntax features of
CHECK PARTITION ALL and FOR UPGRADE are rarely touched
by the existing testing tools. Squirrel doesn’t support either
syntaxes in its internal parser. These two syntax features are
absent in the Squirrel’s input corpus either. Furthermore, the
combined usage of CHECK PARTITION ALL and FOR UPGRADE
is also not presented in the MariaDB official unit test library,
where FOR UPGRADE is more commonly used for CHECK TABLE
in the test instead of CHECK PARTITION. Our tool ParserFuzz
does not rely on any input corpus to realize the different syn-
tax features, where the input corpus are often gathered from
the DBMS’s unit test library. Instead, ParserFuzz learns the
syntax rules from MariaDB’s built-in parser, and automatically
constructs queries that contain the CHECK PARTITION ALL and
FOR UPGRADE symbols. Therefore, ParserFuzz is the only tool
we tested that can detect this bug from MariaDB.

01 joinop: JOIN_KW JOIN_SYM
02 | JOIN_KW nm JOIN_SYM
03 | JOIN_KW nm nm JOIN_SYM ;
04 nm: IDENTIFIER /* terminal keyword for query arg */
05 | JOIN_KW; /* terminal keyword from tokens */
06 /* Mapped query tokens for JOIN_KW
07 * "CROSS" -> "JOIN_KW"
08 * "FULL" -> "JOIN_KW"
09 * "INNER" -> "JOIN_KW"
10 * "LEFT" -> "JOIN_KW"
11 * "NATURAL" -> "JOIN_KW"
12 * "OUTER" -> "JOIN_KW"
13 * "RIGHT" -> "JOIN_KW"
14 */

Listing 14: BNF grammar does not tell the whole story. We
simplify these rules from SQLite’s parser and covert them to BNF.

The diverse syntax features learned from grammar defini-
tion files enable ParserFuzz to generate more diverse test-
ing queries, which cover more interesting syntax features
from the DBMSs, and therefore brings more interesting
bugs that are not possible from the previous tools.

6 Discussion

Syntax rules outside grammar definition file. ParserFuzz
delivers a promising result in exploring syntax elements de-
fined in SQL grammar definition files. However, some gram-
mar rules can be pushed down to the DBMS backend, not in
the grammar definition file. For example, SQLite contains a
parser generator tool, Lemon [43], which supports grammar
definition syntax similar to BNF that Yacc and Bison support.
However, the grammar definition file provided to Lemon does
not strictly represent the ground truth grammar complied by
the SQLite frontend, since many grammar checks are pushed
down to the SQLite back-end to handle. Listing 14 shows
one case that the parser rule in ‘parser.y’ cannot faithfully
defines all the syntax constraints from the SQLite’s parser.
The example focuses on the joinop keyword, which is used
to combine data from two or more tables. The valid query
segments matching joinop could be ‘LEFT JOIN’, ‘RIGHT
JOIN’, and ‘LEFT INNER JOIN’, ‘RIGHT OUTER JOIN’
etc. As we can see the terminal keyword JOIN_KW can map to
all the tokens we mention here, so all these valid cases should
pass the grammar check. However, the three rules defined in
joinop do not enforce the order of the JOIN_KW tokens, which
means a query such as ‘LEFT RIGHT JOIN’ might also pass
the grammar check, and later turns out to be invalid. What’s
worse, the nm keyword brings in IDENTIFIER as an alternative
choice that we can fill into the joinop rules, which would
also be rejected by SQLite parsing in the end. It turns out
SQLite implements a function named sqlite3JoinType, that
are designed to verify the keyword contents passed into the
joinop grammar rules. It effectively rejects any IDENTIFIER
keywords in the parsed syntax tree. It also rejects corner cases
such as ‘LEFT RIGHT JOIN’. However, these additional log-
ics are written in C language instead of using BNF grammar
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define notation. So there is no common pattern we can make
used of to acknowledge these extra syntax restrictions. There-
fore, we currently rely on human efforts to mark these hidden
grammar constraints. For instance, we replace all the nm key-
words to JOIN_KW in joinop, and filter out any ‘LEFT RIGHT
JOIN’ in the query generation.

7 Conclusion

We design ParserFuzz, a novel fuzzing tool that automatically
extracts syntax features from DBMSs built-in grammar defini-
tion files. By traversing these grammar files, ParserFuzz ex-
plores all grammar rules defined in each DBMS, and thus can
generate more diverse testing queries than previous DBMS
testing tools. ParserFuzz detects 81 bugs across five popu-
lar DBMSs, SQLite, MySQL, CockroachDB, TiDB and MariaDB.
The evaluation shows ParserFuzz achieves the highest gram-
mar coverage, the highest code coverage and reports more
bugs within 24-hour experiments. We have reported all de-
tected bugs to the corresponding DBMS developers. They
have confirmed all the bugs and fixed 34 of them.
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