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Abstract—Syntax-based testing is a promising technique for
finding bugs in Database Management Systems (DBMSs). All
existing syntax-based SQL generation tools apply a Top-down
generation method. To construct a SQL query (syntax tree), the
generator forward explores the SQL grammar starting from the
root node, and it stops when no further grammar rule can be
applied to the leaves of the syntax tree. However, the Top-down
generation method tends to put more effort into exploring the
shallow grammar close to the root and neglects the feature-rich
grammar deeper in the grammar space. Therefore, it is not
efficient in finding DBMS bugs.

This paper proposes a new Bottom-up syntax-based SQL
generation technique that puts more testing resources into
exploring the feature-rich grammar rules. The exploration of SQL
grammar begins with one interesting grammar rule that outlines
the syntax of feature-rich SQL functionalities. The generator
then backtracks (Bottom-up) this grammar rule to the root
to create a syntax path that unveils this interesting grammar.
Multiple Bottom-up generated syntax paths are then expanded and
merged to create diverse SQL queries for fuzzing. A prototype
tool, SQLBull, adopts the Bottom-up generation technique for
fuzzing. In the evaluation, SQLBull found 63 zero-day bugs from
5 well-tested DBMSs: MySQL, MariaDB, CockroachDB, DuckDB, and
PostgreSQL. It outperforms all existing tools in both bug-finding
and code coverage. The evaluation results verify the effectiveness
of the Bottom-up generation technique.

I. INTRODUCTION

Database Management Systems (DBMSs) power today’s in-
ternet applications [1]–[4], such as enterprise resource planning
(ERP) [5]–[8], E-commerce [9]–[12], and online banking [13]–
[16]. However, the high complexity of DBMSs makes them
prone to bugs [17]–[20]. A DBMS bug triggered in real-world
applications can lead to severe consequences, such as money
loss [21] or data breach [22], [23]. For example, in June 2015,
the New York Stock Exchange (NYSE) froze stock trading
for almost 4 hours because of a database glitch. This glitch
caused the NYSE to lose at least $14 million [24]. Accordingly,
proactively identifying DBMS bugs through automatic software
testing (and other viable means) is a critical aspect of securing
DBMS software development [25]–[29].

In the DBMS automatic testing domain, it is a well-known
practice to generate SQL testing queries by following SQL

grammar rules (i.e., syntax-based) [17], [30], [31]. The primary
benefit is that the generated test cases have a higher chance
of being syntactically correct. These test cases are more likely
to pass the sanity checks conducted by the DBMS parser
and subsequently trigger the execution of the internal DBMS
program code. Therefore, the syntax-based testers achieve
a higher code coverage and uncover more bugs than non-
syntax-based ones. Because of this benefit, the DBMS testing
community has developed a series of syntax-based testing
tools to examine the DBMS program code. For example,
SQLancer [30] is a representative syntax-based SQL testing
platform that adopts hand-crafted SQL templates to generate
testing SQL queries.

All the existing syntax-based testing tools adopt the Top-
down (TD) generation method. To generate a SQL query (syntax
tree), a TD generator starts its grammar exploration from the
root symbol, where the root is always the topmost node
in the syntax tree. Then, it forward traverses the grammar,
constructing a syntax tree with all the grammar rules it has
explored, and only stops the tree construction when no more
grammar rules can be used further to expand the leaf nodes of
the syntax tree. A more detailed illustration of the TD generation
method is shown in §II-B.

However, the TD generator tends to put more effort into
exploring the shallow SQL grammar, which is inefficient in gen-
erating feature-rich SQL queries that trigger DBMS bugs. We
define feature-rich grammar as the ones that correspond to the
SQL functionalities that are implemented by complex DBMS
internal code and may relate to various DB optimizations.
Feature-rich grammar is typically not located in the shallow
layers of the grammar. Furthermore, for the TD generator, the
operation of exploring the grammar rules further away from the
root (i.e., deeper, require more TD grammar exploration steps
to reach) is dependent on the exploration of rules that are closer
to the root (i.e., shallower, require less TD grammar exploration
steps to reach). Therefore, to explore one feature-rich deep
grammar, a TD generator has to first comprehensively explore
the shallow grammar and find out what shallow grammar
this deep grammar depends on. This procedure is necessary
because without this, it is challenging for the TD generator to
expose and explore this deep grammar. This procedure, however,
prevents the generator from prioritizing its exploration focus on
the deeper and more interesting grammar rules. Additionally,
recursive grammar rules, which introduce further complexity to
the TD generator’s exploration, are not uncommon among the
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rules in the shallow layers. They further increase the difficulty
for the TD generator in exploring the deeper grammar space.

Several existing works attempt to address the above issues
[32]–[34]. For example, some TD generators allocate pre-defined
exploration probabilities to different grammar rules, putting
more weight on certain grammar rules that are known to lead
to existing bugs [27], [35]. This method is more commonly
used by syntax-based testing tools that rely on handwritten
SQL templates, such as SQLancer [30] and SQLsmith [31].
Another method is to rewrite the grammar rules by uplifting
some feature-rich grammar into the shallower layers for more
frequent exploration [36]. However, both methods are manual
effort-intensive to implement and are not scalable to the large
number of grammar rules defined by the DBMSs. They demand
the testers to have deep domain knowledge of the DBMS SQL
grammar to identify the feature-rich SQL grammar and apply
the necessary grammar annotation. Moreover, these methods
are not adaptable in adjusting their weights when testing the
ever-changing SQL dialects implemented by different DBMSs.
Lastly, certain existing works treated the TD generation process
as a Multi-arm Bandit problem [37], [38]. However, resolving
the Multi-arm Bandit problem would likely lead to generating
feature-simple yet correct SQL queries, which is also inefficient
for detecting bugs.

Our approach. We propose a new syntax-based SQL
grammar exploration technique called Bottom-up (BU) syntax
path exploration to focus the testing resources on the feature-
rich SQL grammar. Without wasting testing resources on overly
exploring the shallow syntaxes, a BU explorer starts its execution
from the interesting grammar and backtracks the parent rules
repeatedly until reaching the root. The generated syntax paths
thus unveil the interesting grammar to the root. Furthermore,
we implement a prototype tool called SQLBull, which adopts
the BU exploration technique to generate numerous SQL queries
for automatic DBMS testing. SQLBull is designed with a focus
on the following key points: 1) Generate diverse syntax paths
that connect interesting rules to the root symbol. 2) Efficiently
handle recursive grammar. 3) Generate feature-rich and bug-
triggering SQL queries from the diverse syntax paths.

BU grammar exploration is more efficient than TD primarily
because it prioritizes a greater focus on testing feature-rich
grammar typically not located in a shallow layer. Specifically,
1) By starting BU, the operation of exploring the shallow
grammar (closer to root) is dependent on the exploration of
deeper feature-rich grammar, which means the SQL generator
can focus more on the feature-rich grammar rules without
bothering with comprehensively exploring the shallow layer
grammar. 2) By starting the exploration from the feature-rich
SQL grammar, the feature-rich grammar is always preserved in
the generated syntax tree. 3) BU handles recursive grammar in
linear exploration complexity, whereas the TD’s steps could be
exponential. Therefore, BU brings more exposure to feature-rich
grammar than TD does while handling the issue of recursive
grammar more efficiently, which enables SQLBull to find more
bugs than others. Although we have acknowledged that the

semantic handling of the generated SQL queries is another
important factor for bug discovery [17], [27], [39], this is
not the focus of this paper, and our contribution is to more
efficiently explore the grammar rules that define valid syntax.

We evaluate SQLBull on 5 widely-used DBMSs, includ-
ing MySQL, MariaDB, CockroachDB, DuckDB, and PostgreSQL.
SQLBull discovers 63 unique zero-day bugs across five DBMSs,
demonstrating the effectiveness of the BU strategy. In addition, it
outperforms all existing state-of-the-art DBMS testing tools in
terms of bug discovery efficiency and DBMS fuzzing coverage.

In summary, this paper makes the following contributions:

• We propose a novel Bottom-up (BU) SQL generation
technique, which redirects more testing resources to
explore interesting SQL grammar rules.

• We implement a prototype tool, SQLBull, that adopts
the BU generation technique. SQLBull detects 63 unique
zero-day bugs across 5 well-tested DBMSs, significantly
outperforming all existing DBMS testing tools.

Open Source. We have released SQLBull at: https://github.
com/SteveLeungYL/SQLBull.

II. BACKGROUND & MOTIVATION

In this section, we introduce the background of syntax-based
DBMS testing in §II-A. Next, we then introduce a motivating
example in §II-B to demonstrate a TD generator’s inefficiency
and a BU generator’s effectiveness in detecting DBMS bugs.

A. Background of Syntax-based DBMS Testing

To improve the quality of the generated test cases, the fuzzing
community adopts the syntax-based fuzzing strategy to generate
syntactically correct test cases. They can be classified into two
main categories: those based on handwritten SQL templates
and those based on DBMSs’ built-in grammar. The former
uses hand-crafted SQL templates implemented in custom
programming languages to output SQL query strings. For
example, SQLancer uses Java to implement its SQL templates,
while SQLsmith uses C++. The second category of tools borrows
the built-in SQL grammar of a DBMS to guide the test case
generation. The parser of a DBMS takes the grammar as
input and transforms the input SQL query strings into syntax
trees. Instead of matching the grammar rules to the provided
seed (test case) queries, a syntax-based generator chooses one
arbitrary grammar rule to execute for each parsed tree node,
which eventually constructs a syntax tree from all the executed
grammar rules. The generated syntax tree is then transformed
into a syntactically correct SQL query for execution. A more
detailed description of the syntax-based SQL generation is
illustrated in §II-B. Because most DBMSs use parser generators
[40]–[43] such as Bison or ANTLR to convert their grammar
into parser code, the grammar code is typically located in the
.y or .g4 files [44], [45] in the DBMS source repo [17], [39].
The syntax-based testing tools directly leverage the grammar
to generate various SQL queries for testing.
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01 CREATE TABLE v00 (c01 INT, c02 STRING);
02 FROM v00 AS ta03, LATERAL ( SELECT 'string' IN ta03.c02 )
03 AS ta04 POSITIONAL JOIN v00 AS ta05;
04 -- Internal Fatal Error: Expression with
05 -- depth > 1 detected in non-lateral join.

Listing 1: Proof-of-Concept (PoC) of a Fatal Error from DuckDB.
The Fatal Error is caused by combining POSITIONAL JOIN and
correlated subquery in one SQL statement, which DuckDB does not
support. The correct behavior of DuckDB is to reject processing this
SQL statement by using sanity checks.

B. An Example Fatal Error from DuckDB

Listing 1 shows one detected bug from DuckDB. The bug
Proof-of-Concept (PoC) contains two SQL statements: The first
SQL statement in Line 1 creates a standard table v00 with two
columns, c01 and c02. The second SQL statement in Lines 2-3
is a SELECT statement that outputs the analyzed data from the
created table v00, even though the SELECT keyword is omitted.
The SELECT statement joins three tables together. The first two
tables are implicitly joined within the FROM expression. Without
the WHERE expression to apply the JOIN condition, the implicit
JOIN between the first two tables is similar to a CROSS JOIN
operation. Lastly, the third table is POSITIONAL JOINed with
the result of the first two tables. When running with the
latest version of DuckDB, version v1.1.4-dev bcd6582 at the
time of writing, the execution engine of DuckDB throws an
Internal Fatal Error. After triggering the fatal error, DuckDB
enters safe mode and halts executing any subsequent SQL
statements. The user must explicitly restart the DuckDB process
to resume normal DuckDB functionalities.

The second SQL statement from Listing 1 utilizes a unique
feature, POSITIONAL JOIN, which is only supported by a limited
number of DBMSs. Unlike the traditional CROSS JOIN operation
which merges multiple rows from the two tables by matching
values in corresponding columns, POSITIONAL JOIN matches
rows by matching their physical positions in the two tables.
If the two POSITIONAL JOINed tables have a different number
of rows, NULL values are padded to the shorter columns. In
addition, the LATERAL keyword presented before the SELECT
subquery indicates the usage of the correlated subquery,
meaning that the inner query references values that are
introduced by the outer query. In this PoC, the SELECT subquery
references c02 without a FROM expression, and the c02 column
can be auto-inferred from ta03 in the outer query. Unfor-
tunately, the current design of the DuckDB execution engine
does not support processing with correlated subquery and
POSITIONAL JOIN in one SQL statement. The DuckDB developer
has put sanity checks in place to reject queries that combine
correlated subquery and POSITIONAL JOIN within the same
joining operation. However, this PoC applies POSITIONAL JOIN
to the result of the correlated subquery, where the DuckDB
developers overlooked this scenario. Therefore, this PoC
triggers an unexpected and unsupported behavior from DuckDB,
causing it to throw an internal fatal error.

Although the semantic sanity checks of DuckDB should reject
the execution of Listing 1 because it contains unsupported
SQL features, the queries from the PoC are syntactically
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Fig. 1: Visualized DuckDB SQL grammar that contains the
correlated subquery (Layer 8) and the POSITIONAL JOIN (Layer 13)
grammar. One node represents one grammar rule. One directed edge
represents one candidate child rule that can be used to expand one
symbol from the parent rule. The symbol from the parent rule
to be expanded by the child is also shown as the child node’s
header. The bold texts at Layer 2, Layer 4, and Leaf highlight the
symbols select_no_parens and sql_expr appearing at different layers,
indicating recursive grammar is present.

01 root:
02 select_stmt
03 | insert_stmt
04 | ... 35+ other statements
05 ;
06 select_stmt:
07 select_no_parens
08 | ...
09 ;
10 select_no_parens:
11 select_clause opt_sort_clause opt_limit_clause ...
12 | ... 8+ other rules
13 ;

Listing 2: Grammar rules from DuckDB source code. The grammar
rules are visualized from root to Layer 3 in Figure 1.

correct, so they can be successfully parsed and validated by
the DuckDB parser. Therefore, the DuckDB grammar contains all
the SQL grammar rules required to generate this PoC. Figure 1
shows a visualization of DuckDB grammar. The visualization
focuses on illustrating the parts related to POSITIONAL JOIN
and correlated subquery, and it omits the other grammar.
Listing 2 shows the grammar rules from the DuckDB source
code [46], which references the grammar rules from root to
Layer 3 in Figure 1. Each node in Figure 1 represents one
SQL grammar rule. Each directed edge connecting a parent
node to a child node corresponds to one valid grammar rule
that can be applied to expand one symbol (head of the child
node) from the parent node. Starting from the topmost root
node, which typically represents the start of the grammar, the
grammar keeps expanding its depth until all the contained
symbols can’t be further expanded by any valid grammar
rules, i.e., grammar expansion terminates when it reaches
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leaf nodes. The symbols in the leaf nodes are constructed by
SQL keywords (e.g., SELECT, FROM, WHERE, etc.), identifiers (e.g.,
TABLE_NAME, COLUMN_NAME, etc.), and constants (e.g., number,
text string, etc.). We define the layer of a node in the grammar
as the distance between the node and the root. For example,
the joined_table node is on Layer 12, indicating that the
joined_table node is 12 expansion steps away from the root.
In addition, a node at a deeper layer can reference the same
symbol as a node at a shallower layer (recursive grammar),
creating a cycle in the grammar and making the grammar
infinite in layer and exploration space.

A syntax-based SQL generator traverses this grammar to
generate a series of SQL statements. When resolving the
symbols in each layer, the generator selects one and only
one grammar rule to expand a particular symbol into one or
more new symbols. The generation process terminates when all
explored grammar branches eventually reach the leaves. The
generator creates various forms of SQL statements by choosing
different grammar rules at each layer.

Inefficiency of Top-down syntax-based generator. Although
a TD syntax-based SQL generator can generate a series of
SQL statements by traversing the grammar as mentioned
above, generating the PoC from Listing 1 is still challeng-
ing. The primary reason is that the grammar rules that
define the PoC’s critical SQL features, POSITIONAL JOIN and
correlated subquery, are hidden deep (e.g., Layer 13) in the
grammar space. As shown in Figure 1, to explore the rules
that define the POSITIONAL JOIN and correlated subquery,
the generator needs to traverse the grammar up to Layer 8 and
Layer 13, respectively, which is far from the root. Without
human annotation to provide syntax paths, a TD generator
has to first comprehensively explore the grammar rules at
the shallower layers to find the paths that connect these
rules to the root. For example, a TD generator may waste
its computational resources on exploring the CREATE TABLE
statements, not knowing it will never lead to POSITIONAL JOIN
or correlated subquery. In addition, whether using Depth-
First Search (DFS) or Breadth-First Search (BFS), a TD syntax-
based SQL generator will find an exponentially increasing
number of keywords to expand/explore when it reaches deeper
layers of the grammar. As a result, a TD syntax-based SQL
generator tends to put more effort into exploring the shallow
layers of the grammar, and it is challenging for a TD syntax-
based SQL generator to generate the PoC from Listing 1 within
a reasonable amount of time.

Challenge in handling recursive grammar rules. The
TD SQL generator faces a trade-off between abandoning the
interesting grammar hidden under the recursive grammar rules
or increasing the risk of exponentially increasing the grammar
exploration complexity. Listing 3 further details the recursive
grammar of sql_expr presented in Figure 1. Figure 2 shows
the visualization of a TD generator’s execution when it handles
the recursive sql_expr grammar from Listing 3. If the TD
generator prioritizes a thorough exploration of the grammar,
it will quickly encounter the handling of recursive grammar

01 where_clause:
02 WHERE sql_expr;
03 | ...
04 ;
05 sql_expr: // 66 rules contain 'sql_expr', 4 does not.
06 sql_expr '+' sql_expr
07 | sql_expr '-' sql_expr
08 | sql_expr '*' sql_expr
09 | sql_expr '/' sql_expr
10 ...
11 | COLUMN_NAME
12 ;

Listing 3: Grammar rules from DuckDB. Line 6-9 shows certain
recursive grammar rules that reference the sql_expr symbol.
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Fig. 2: Execution of Top-down query generator when handling
recursive grammar of sql_expr.

rules, such as the ones shown in Listing 3. SQL expression
(sql_expr) is one of the most complex SQL features provided
by DuckDB, with 70 grammar rules attached to it. Furthermore,
of the 70 grammar rules, 66 are recursive rules that reference
the sql_expr symbol at least once. As shown in Figure 2, when
handling the sql_expr, the TD generator repeatedly expands
the sql_expr. It leads to an exponential number of sql_expr
grammar that needs to be processed and eventually leads to
an exponential growth of the syntax tree.

Unfortunately, these recursive grammar commonly occurs
across multiple layers and are hard to track. Existing works
rely on human efforts to annotate the grammar, e.g., annotating
sql_expr with a high probability of choosing the COLUMN_NAME
rule after reaching a specific exploration threshold. However,
this annotation process is error-prone and time-consuming.
Our approach is capable of efficiently finding this bug.
SQLBull, the first BU syntax-based SQL testing tool proposed
in this paper, can find this bug by employing a Bottom-up
grammar exploration technique. We configured SQLBull to start
its grammar exploration from the SQL Expression grammar,
because this grammar is widely used to implement various SQL
features (further discussed in §V-A). The primary advantage of
the BU grammar exploration is that it prioritizes more testing
resources on exploring the interesting grammar rules typically
located at the deeper layers of the grammar. This is achieved
by starting the grammar exploration from the interesting rules,
and then building the syntax paths that connect the interesting
rules to the root in a BU manner (§III-A). By walking BU, the
exploration of the deeper feature-rich grammar becomes the
prerequisite step of exploring the shallower grammar rules,
which allows SQLBull to skip the comprehensive exploration
of the shallow grammar and more efficiently expose the
interesting grammar. More importantly, by starting from the
interesting rules, SQLBull always preserves the interesting
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grammar in the final generated SQL statements. Moreover,
SQLBull does not suffer from the complexity issue when
handling recursive grammar rules. SQLBull handles recursive
grammar with linear exploration time and employs pruning
strategies to prevent generating humongous syntax trees due to
the recursive grammar (§III-B). These humongous syntax trees
could easily lead to DBMS sanity check rejection. As a result,
SQLBull can find the bug by fuzzing for less than 1 hour.

III. DESIGN OF SQLBULL

SQLBull

SQL
Grammar

Rules

Internal Database for Syntax Path & Syntax Tree

Bugs

New 
Code 
Cov
& 
Pass 
Sanity 
Checks

DBMS Query Execution

Bottom-up Syntax 
Path Explorer

Recursive 
Grammar Handling

Syntax Tree 
Generator & Mutator

Fig. 3: System Overview of SQLBull.

Threat Model. We adopt the same threat model as Squirrel,
DynSQL, and BuzzBee, in which attackers can send SQL queries
to the DBMSs and conduct DoS attacks. We leave the
sophisticated exploitation of bugs to future research.
SQLBull is designed based on the following insights: 1)

Prioritize the exploration of the feature-rich SQL grammar.
2) Handle recursive grammar within a reasonable time and
resource limit. 3) Given the interesting grammar, SQLBull
should generate diverse SQL syntax trees that expose various
use cases of the grammar.

System Overview. Based on these insights, we propose a new
syntax-based DBMS testing tool, SQLBull. Figure 3 shows the
system overview of SQLBull. SQLBull does not rely on SQL
queries as input seeds; instead, it only accepts the grammar
rules from the target DBMS source code [46]–[50] as input,
such as the one shown in Listing 2. The first component of
SQLBull is the Bottom-up (BU) SQL syntax path explorer, which
utilizes BU grammar exploration to find the syntax paths that
connect feature-rich SQL grammar to the root (§III-A). To
prevent the state explosion caused by the recursive grammar
rules, SQLBull then adopts Recursive Grammar Handling to
prune the syntax paths and save the testing resources (§III-B).
When generating new SQL queries sent to the DBMS for
execution, SQLBull randomly picks one pruned syntax path
from its library and expands it into a complete SQL syntax tree
(§III-C). The expanded SQL syntax tree is then transformed
into an SQL query string and sent to the DBMS for execution.
Suppose one generated SQL query triggers new code coverage
in DBMS execution and passes all sanity checks. In that case,
SQLBull will promote the executed SQL query by mutating its
syntax tree for more diverse SQL queries. (§III-C). Lastly, if
one generated SQL query triggers a crash or an unexpected
fatal error on the DBMS, SQLBull will save the sequence of
SQL queries generated that lead to the bug in the file system
for further analysis (§IV).

Algorithm 1: BU Syntax Path Exploration
1: input Gint, GSQL

2: output Pall

3: Pall ← ∅
4: for all gint ∈ Gint do
5: for trial ∈ [0..Ntrials] do
6: Pcur .insert(gint)
7: while gint ̸= root do
8: Gpar ← GSQL.get_parent_grammar_of(gint)
9: gint ← Gpar .rand_pick()

10: Pcur .insert(gint)
11: end while
12: if not Pall.find_duplicate(Pcur) then
13: Pall.insert(Pcur)
14: end if
15: end for
16: end for

joined_table
table_reference POSITIONAL

JOIN table_reference

table_reference
LATERAL select_with_parens opt_alias_clause

simple_select
PIVOT table_reference ON

...

from_clause
FROM

table_reference

Fig. 4: Candidate grammar rules to explore when the BU exploration
reaches table_reference. Since table_reference is used by grammar
that defines joined_table, from_clause, and simple_select, SQLBull
chooses one of the parent rules as the next node of the syntax path.

A. Bottom-up SQL Syntax Path Explorer

SQLBull employs a BU syntax path explorer to efficiently
find the paths that connect the feature-rich SQL grammar to
the root symbol. Algorithm 1 shows the algorithm of the BU
syntax path explorer. The BU syntax path explorer accepts two
inputs: 1) an array of interesting grammars that need prioritized
testing, Gint, and 2) the entire SQL grammar extracted from
the DBMS source code, GSQL. For each individual interesting
grammar gint in Gint, the explorer takes Ntrials trials to
construct syntax paths connecting gint to the root symbol
(Lines 4-5). In each trial, the explorer starts with grammar
gint and inserts it to an empty syntax path Pcur (Line 6). Then
it randomly picks one parent grammar rule of gint repeatedly
until it reaches the root symbol (Lines 7-11). The constructed
syntax path is saved in Pcur, and it is added to the final syntax
path set Pall if it is not a duplicate (Lines 12-14). To further
illustrate the parent grammar rule selection process, Figure 4
shows one example execution cycle between Lines 7 and 11
in Algorithm 1. It assumes that SQLBull tries to find a path that
connects the interesting grammar of table_reference (gint)
to the root. SQLBull identifies that the table_reference is de-
fined by “LATERAL select_with_parens opt_alias_clause”.
Instead of finding another grammar to further expand
the table_reference like what the TD generator would
do, the BU explorer searches for all the grammar rules
that contain the table_reference in their expansions (i.e.,
get_parent_grammar). As shown in Figure 4, the BU ex-
plorer finds multiple parent grammar rules, such as the
“FROM table_reference” from the from_clause expansion and
the “PIVOT table_reference ...” from the simple_select
expansion. The BU explorer then randomly picks one and
only one parent grammar as the next grammar to explore
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and treats it as one node of the BU-generated syntax path. The
explorer continues to explore the parent grammar rules until the
exploration reaches the root symbol. Finally, an example of
the BU-generated syntax path (Pcur) can be found by including
all the left-sided nodes in Figure 1. This syntax path connects
grammar sql_expr to the root.

The benefits of constructing syntax paths in a Bottom-
up manner are two-fold: 1) By constructing SQL queries
using these syntax paths, the interesting paths will always be
preserved in the final-stage SQL syntax trees. 2) Having diverse
syntax paths with interesting grammar rules enables SQLBull to
freely explore the different use cases of the interesting grammar
rules, effectively increasing the interesting grammar’s exposure
in the fuzzing process. These advantages from BU can hardly
be achieved by TD, which require comprehensive exploration
of the shallow grammar to find the different paths that connect
the interesting grammar to root. And the TD-generated queries
are not guaranteed to explore the interesting grammar.

B. Recursive Grammar Rule Handling
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Fig. 5: A BU-generated syn-
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“sql_expr = sql_expr”.

The BU explorer introduced in §III-A is inherently capable
of handling the recursive grammar rules with linear exploration
complexity. The main reason is that the exploration process
will always converge at the root when traversing the grammar
BU. For example, the syntax path from Figure 5 shows one
BU-generated syntax path that touches on the recursive grammar
of sql_expr. This syntax path follows the grammar rules
from Listing 3. Even though the BU explorer is likely to
encounter recursive grammar rules in its exploration process,
it only needs to handle one get_parent_grammar at each
exploration cycle. In addition, the candidate rules for the
BU explorer to select include not only recursive rules but
also non-recursive ones. For sql_expr, “COLUMN_NAME” is one
non-recursive rule. Because the BU explorer does not choose
the same rule twice in one BU exploration, the explorer is
guaranteed to escape the recursive loop eventually. Therefore,
the BU explorer is guaranteed to finish its exploration process
by reaching the root in a reasonable time.

Although the BU explorer is capable of handling the recursive
grammar rules, however, to expand the BU-generated syntax
paths into concrete SQL syntax trees (further discussed

in §III-C), SQLBull could still suffer from the occurrence
of the recursive grammar rules and lead to the exponential
growth of the syntax search space. To avoid this issue, SQLBull
adopts a pruning process to remove the recursive grammar
rules from the BU-generated syntax paths. The pruning process
removes all the recursive grammar occurrences from the BU-
generated syntax paths. For example, as shown in Figure 5,
the “sql_expr -> sql_expr -> sql_expr -> where_clause”
path will be pruned to “sql_expr -> where_clause”. Without
the pruning process, when expanding the BU-generated syntax
paths into concrete SQL syntax trees (§III-C), SQLBull would
frequently be trapped in path explosion due to the occurrence
of the recursive grammar rules and crash because of memory
exhaustion. Even if occasionally, a syntax tree is generated
successfully with multiple recursive grammar rules present,
the resulting SQL query could be hundreds of characters long
and would be easily rejected by the DBMS’s sanity checks
because of a semantic error. At last, although this pruning
process may lead to the absence of recursive grammar rules
in the BU-generated syntax paths, the syntax tree generation
and mutation processes, further discussed in §III-C, will bring
back the recursive grammar in the final SQL syntax trees.

C. Syntax Tree Generation & Mutation

Algorithm 2: Syntax Tree Generation
1: function SyntaxTreeGeneration
2: input Pall, GSQL

3: output S
4: S ← Pall.get_rand()
5: for all node ∈ S.get_unresolved_nodes() do
6: SyntaxTreeGenerationHelper(S, node, Pall, GSQL, false)
7: end for
8: end function
9:

10: function SyntaxTreeGenerationHelper
11: input S, node, Pall, GSQL, use_forward_exp
12: output S
13: if use_forward_exp then
14: S ← S.merge(GSQL.forward_gram_exp(node))
15: else
16: if Pall.is_contain_path_with_node(node) then
17: Pcur ← Pall.get_rand_path_with_node(node)
18: S ← S.merge(Pcur)
19: for all nodechild ∈ Pcur .get_unresolved_nodes() do
20: if check_recursive_grammar(S, Pcur) then
21: S ←SyntaxTreeGenerationHelper (S, nodechild, Pall, GSQL,

true) // use_forward_exp = true
22: else
23: S ← SyntaxTreeGenerationHelper (S, nodechild, Pall, GSQL,

false) // use_forward_exp = false
24: end if
25: end for
26: else
27: S ← S.merge(GSQL.forward_gram_exp(node))
28: end if
29: end if
30: end function

After removing recursive grammar from the SQL syntax
paths, SQLBull will further expand these paths into concrete
SQL syntax trees. Algorithm 2 shows the algorithm of
the syntax tree generation process. SQLBull randomly picks
one syntax path from its internal database (Line 4). In the
case shown in Figure 7, it picks Syntax Path 1, which con-
nects where_clause, simple_select, and update_stmt. Then,
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Fig. 7: Process of transforming a BU-generated syntax path into
a complete SQL syntax tree. The bold text highlights a recursive
grammar introduced when joining multiple syntax paths into one
complete SQL syntax tree.

SQLBull scans through the syntax path and handles handle
each SQL symbol that needs to be expanded by the grammar
rules (Line 5). In the case shown in Figure 7, a sequence
of symbols within the simple_select rule requires handling.
There are two symbol handling strategies: as demonstrated
by the SyntaxTreeGenerationHelper function in Algorithm 2.
1) If one saved syntax path stored in the internal database
contains the grammar for the symbol, the syntax path will
be merged into the current syntax tree (Line 16 - 25). 2) If
no saved syntax path contains the grammar for the symbol,
SQLBull will forward traverse the grammar rules starting
from the symbol until it reaches the leaves of the grammar
(Line 27). In the case shown in Figure 7, Syntax Path 2
merges into Syntax Path 1, which resolves the expansion of
the group_clause symbol. Syntax Path 3 is further merged
into the syntax tree subsequently, which resolves the expansion
of the select_no_parens symbol. When no saved syntax path
contains the grammar for the symbol, e.g., the target_list
and from_clause symbols in Figure 7, a conservative forward
traversal process is adopted to resolve the symbol.

It is worth noting that recursive grammar may be reintro-
duced in the syntax tree generation process. For example, the
simple_select symbol in Figure 7 demonstrates one recursive
grammar rule from the generated syntax tree. To reduce
the occurrence of the recursive grammar and thus minimize
the performance and complexity impacts caused by it, when
SQLBull detects a recursive grammar rule in the current syntax
tree generation or mutation process, it discards further syntax
paths merging and falls back to the more conservative forward
traversal approach (Line 13-14, 20-21 in Algorithm 2). The
forward traversal approach prioritizes exploring grammar that
leads to the leaves of the grammar tree and avoids using known
recursive grammar, which makes it less likely to suffer from
path explosion.

If one generated SQL query passes all the sanity checks and
triggers new DBMS code coverage, SQLBull will mutate the
SQL syntax tree of interest. The mutation process of SQLBull
is largely the same from the previous work of Squirrel [39].
The only addition of SQLBull is that when applying type-based
mutation on the syntax tree (or IR in Squirrel), SQLBull uses
not only existing saved syntax trees, but also BU-generated
syntax paths to mutate the syntax tree nodes. Figure 6 shows
an example of the syntax tree mutation. SQLBull randomly

picks one syntax tree node as the mutation target. The mutation
target is the sql_expr node in Figure 6. Then SQLBull removes
all the children nodes of sql_expr and replaces the children
of sql_expr with another saved syntax path. As a result, the
“COLUMN_NAME” is mutated to “sql_expr = sql_expr”.

IV. IMPLEMENTATION

We implemented SQLBull as a prototype to demonstrate
the effectiveness of our Bottom-up SQL generation technique.
SQLBull is programmed in C++ and contains ∼60000 lines
of code. SQLBull is built on the code base of Squirrel [51]
and leverages the semantic-guided instantiation method
introduced by Squirrel [39] to fill in the names and constants
presented in the generated query syntax tree. It currently
supports testing on 5 DBMSs, including MySQL, MariaDB,
CockroachDB, DuckDB, and PostgreSQL, by accepting the gram-
mar code of these DBMSs as inputs.

Once a being-tested DBMS crashes or throws an unexpected
fatal error indicating memory or data corruption, SQLBull
uses the PoC Simplification algorithm shown in Algorithm 3
of Appendix A to simplify the generated query sequence.
SQLBull uses the traditional AFL code coverage mechanism

to instrument the C/C++ DBMSs and collect the DBMS branch
coverage information. To balance the fuzzing efficiency and
the coverage accuracy, we increase the code coverage metadata
memory region from size 64K to 256K, which is consistent with
other DBMS fuzzing works [17], [39]. For Go programming
language-implemented DBMSs such as CockroachDB, we
modify the line coverage instrumentation from the default
Go built-in library, add the functionality to support basic block
coverage, and make it compatible with SQLBull’s coverage
collection mechanism.

V. EVALUATION

The evaluation aims to answer the following research
questions.
Q1. Can BU effectively detect real-world DBMS bugs?
Q2. Can SQLBull outperform existing tools in bug detection?
Q3. What is the influence of adjusting the starting point of BU

exploration?
Q4. Can BU explorer expose feature-rich SQL features?

A. Experimental Setup

To answer question Q1, we evaluated SQLBull on all 5
supported DBMSs, i.e., MySQL, MariaDB, CockroachDB, DuckDB,
and PostgreSQL. SQLBull discovered 63 bugs across all 5
DBMSs in total, and we summarize all bug information
in §V-B.

To answer question Q2, we compared SQLBull with the
state-of-the-art DBMS testing tools in §V-C. Unfortunately,
because different DBMSs share their own SQL dialects and
the dialects are vastly different, no single tool can support all
the DBMSs available. Therefore, we select the most advanced
and open-source DBMS testing tools and compare them with
SQLBull on supported DBMSs. Additionally, because most
SQL templates implemented by the baselines do not support
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DBMS SQLBull’s Bottom-up Grammar Exploration Starting Points

MySQL “expr”
MariaDB “expr”

PostgreSQL “a_expr”, “b_expr”, “c_expr”
DuckDB “a_expr”, “b_expr”, “c_expr”, “d_expr”

CockroachDB “a_expr”, “b_expr”, “c_expr”, “d_expr”

TABLE I: SQLBull’s Bottom-up grammar exploration starting points.
SQLBull identifies which SQL grammar expands the symbols listed
in the table and backtracks the identified grammar to the root to
generate syntax paths.

all SQL statements, to ensure the comparisons between SQLBull
and the other tools are fair, we configured SQLBull to only
generate SQL statements that are commonly supported by all
baselines, specifically, CREATE, INSERT, ALTER, DELETE, UPDATE,
and SELECT statements. We note this configuration as SQLBullM.

We include existing works from three main categories.
The first category of tools generates testing SQL queries
based on handwritten SQL templates. The most advanced
tool in this category is SQLancer. Although SQLancer was first
introduced in 2022, it has become the most popular platform for
implementing the latest SQL testing techniques [52]–[56]. In
this evaluation, we include two of the latest and most advanced
testing techniques implemented in SQLancer which are capable
of detecting DBMS memory errors, i.e., SQLancer+QPG [52] and
SQLancer+DQP [53]. We compare SQLBull with SQLancer+QPG
on CockroachDB, and SQLancer+DQP on MySQL and MariaDB. In
addition, we include SQLsmithC as an SQL template-based
testing tool maintained by the CockroachDB developer team
and evaluate it on CockroachDB [57]. The second category of
testing baselines is syntax-based fuzzing tools that directly
learn the SQL grammar from the DBMS grammar code. We
include Squirrel in this category, which has been the default
choice by different DBMS vendors to fuzz their products [39].
Furthermore, we implemented a TD syntax-based generation tool
that utilizes the ϵ-greedy methodology to decide which grammar
to explore from each symbol handling. This tool formulates
the TD syntax-based generation as a Multi-arm Bandit (MAB)
problem. This methodology of handling TD generation is a
well-known method that is widely used in various syntax-
based generation tools, including but not necessarily limited
to the DBMS testing domain [33], [34], [58]. We include
SQLBullTD in this category, which served as a baseline to show
the performance of naive TD syntax-based generation. Finally,
the third category of testing baselines is the traditional bit-flip
mutation-based fuzzing tools. We include the most popular
fuzzing tool, AFL, to test all DBMSs that are programmed in
C/C++. We use the inputs saved from the Squirrel official
repository [51] as the universal input seeds for all baselines
that accept SQL queries as input seeds.

To guide SQLBull in exploring the interesting SQL grammar
rules, we configure the BU exploration to start from the
SQL expressions’s grammar by default. Table I shows the
default SQL expression symbols for different DBMSs. The
grammar of SQL expression is chosen as the starting point
because it has been widely used in different DBMS features.

Commonly executed and feature-rich SQL features such as
GROUP BY, ORDER BY, and WINDOW are all defined on top of the
SQL expression grammar. These features have been observed
as the construction blocks of various bug-triggering SQL
statements. However, to keep the evaluation complementary
and fair, we answer question Q3 by changing the BU grammar
exploration to target arbitrary non-SQL expression grammar.
We name this configuration of SQLBull as SQLBullNE. We
demonstrate the influence of adjusting the exploration starting
point in §V-D.

To answer question Q4, a naive way is to present the
number of depths SQLBull can navigate into the grammar.
However, this metric is not a good indicator of the quality of the
generated SQL queries, even though we claim that the feature-
rich SQL features are not typically defined by the grammar
in the shallow layers. Because the grammar in the most depth
of a syntax tree is usually the ones that implement the most
simple features, such as SQL keywords (e.g., NULL), identifiers
(e.g., COLUMN_NAME), and constants (e.g., number, text string),
being deep in the grammar does not necessarily represent a
good quality of the generated SQL queries. Furthermore, the
recursive rules presented in the grammar could further enlarge
the depths of the generated syntax trees, and they are not
helpful in bug finding. Therefore, we discard the grammar
navigation depth as a metric to evaluate the quality of the
generated SQL queries.

Instead, to answer question Q4, we conduct a statistic survey
in §V-E to check the exploration frequency of a selective set of
SQL features. The selected SQL features are: Subquery, logical
processing expressions such as GROUP BY, ORDER BY, WINDOW,
HAVING and OVER, joining multiple tables (JOIN), and conditional
expressions such as CASE ... WHEN ... ELSE ... END (CASE). The
features are selected based on the following criteria: 1) They
are implemented on top of the SQL expression grammar rules,
which matches the configuration we provided to SQLBull for
the BU grammar exploration; 2) They are feature-rich and are
commonly seen in the bug-triggering PoCs. We do not claim the
selected SQL features represent all the interesting features that
could potentially trigger bugs. However, the statistics of these
selected SQL features indicate the effectiveness of SQLBull
BU grammar exploration, especially when compared with the
results from TD generation under similar experimental settings.
For completeness, we also include the statistics of these SQL
features from the queries generated by other testing tools,
including mutation-based fuzzer Squirrel [39] and template-
based SQL generator SQLancer [30]. These statistics infer the
grammar space exploration priorities for these testing tools.

All evaluations were conducted on a machine with Intel(R)
Core(TM) i5-9600KF 6 cores CPU and 48GB of RAM. Each
tool was run on a single CPU core and evaluated for 24 hours.
We repeated each evaluation 10 times and report only the
average result. We chose the latest version of the DBMSs
available at the time of the evaluation, i.e., the evaluations
were run upon MySQL on version 8.0.40, MariaDB on version
11.7.2, CockroachDB on version v24.3.1, DuckDB on version
v1.1.3, and PostgreSQL on version REL_17_4. We compiled all
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C/C++ DBMSs with Address Sanitizer and with Assertions
enabled. CockroachDB benefits from the Go runtime checks,
where triggered memory corruptions are automatically detected
and reported to the user.

B. Detected Bugs

SQLBull discovers 63 zero-day bugs across all 5 DBMSs,
and we summarize the bug information in Table II. All bugs
have been confirmed by the corresponding DBMS developers.
Specifically, SQLBull discovers the most bugs on DuckDB, with
31 new unique bugs detected. In addition, SQLBull discovers 10
new unique bugs on MySQL, 5 new unique bugs on MariaDB, 14
new unique bugs on CockroachDB, and 3 new unique bugs on
PostgreSQL. All Crash bugs for MySQL and MariaDB are marked
with either critical or major severity (while the other DBMSs
do not rate the bug severity in their bug tracking system).
The bug types are categorized into Crash, Fatal Error, and
Assertion Failure. Crash means that the latest release version
of the DBMS will segfault when executing the bug-triggering
SQL queries. Fatal Error means that when executing the bug-
triggering SQL statements, the released version of the DBMS
detects an unexpected memory or data corruption error, and the
error stops the DBMS from continuing the query execution. For
DuckDB, after triggering a Fatal Error, it enters safe execution
mode. Any subsequent queries sent to DuckDB for execution
will be abandoned unless the user manually restarts the DuckDB
process. Assertion Failure represents that the bugs will only
be triggered when running the PoC on a DBMS debug build.
However, the error thrown by the Assertion indicates that
an internal logic error has already occurred from the query
execution. It is possible to slightly alter the PoC to trigger
more severe bugs, such as Crash or Fatal Error.

All bugs are reported to the corresponding DBMS bug
forums, and the developers have confirmed all the reported bugs
are zero-day unique bugs, which means these bugs have not
been detected by any existing tools before. Except for the bugs
reported to MySQL, all other bug reports are publicly available.
The MySQL bug reports will open to the public at a later date
after a major version of MySQL is released with the bug fix.
Among all the bugs, the bugs marked as fixed means that the
DBMS developers have already released patches to address
the reported bugs. It should be noted that the MySQL developers
have acknowledged all the bugs detected by SQLBull. However,
they typically release bug fixes altogether with the next major
version release of MySQL. At the time of writing, the next major
version of MySQL has not been available to the public yet, so
most of the reported MySQL bugs remain confirmed.

C. Comparison with Existing Tools

To answer how SQLBull performs compared to existing
methods, we evaluate SQLBull and SQLBullM with state-of-
the-art DBMS testing tools. Figure 8a, Figure 8d, Figure 8g,
Figure 8j, and Figure 8m show the number of bugs detected by
different tools. Figure 8b, Figure 8e, Figure 8h, Figure 8k, and
Figure 8n show the branch or basic block coverage when the
DBMSs run with different testing tools. Figure 8c, Figure 8f,

Figure 8i, Figure 8l, and Figure 8o show the correctness rate
of the queries generated or mutated by different tools. Overall,
SQLBull and SQLBullM reproduced all the bugs detected by
the baselines and they achieved the highest number of bugs
detected while preserving respectable query correctness rates
and the highest code coverage among all other testing tools.

We evaluate Squirrel on MySQL and PostgreSQL. Similar
to other syntax-based fuzzing tools, Squirrel ensures the
generated query statements are syntactically correct. However,
DBMSs may reject the generated queries due to the semantic
issues. It achieves a similar query correctness rate as SQLBull
when testing on MySQL, about 42%. But Squirrel achieves
a lower query correctness rate on PostgreSQL, which is less
than 3% compared to SQLBull’s ∼18%. Squirrel relies on
input seed to bootstrap its fuzzing process. It prioritizes all the
grammar presented in its input seed, regardless of whether the
grammar is helpful in bug discovery or not. Using the default
input seed from the Squirrel official repository [51], Squirrel
explores 58.8% of the code coverage achieved by SQLBull when
testing on MySQL and 68.8% on PostgreSQL. It is worth noting
that Squirrel could perform better if we provide an even more
comprehensive testing seed that covers more SQL grammar.
However, we observed that gathering a comprehensive testing
corpus is also challenging and requires a lot of manual work.
In comparison, SQLBull does not require any input seed. The
DBMS user only needs to configure the SQL features to
be tested, and SQLBull will automatically explore the SQL
features with diverse generated queries. Overall, SQLBull
and SQLBullM can find more bugs than Squirrel by more
thoroughly exploring the feature-rich grammar of the DBMSs.
SQLancer+QPG and SQLancer+DQP are the latest and most

advanced DBMS testing techniques implemented on top of
SQLancer. Both tools utilize the same SQL templates from
SQLancer to generate SQL queries but leverage different
testing strategies to explore the grammar space of the DBMSs.
Interestingly, both techniques achieve a near-perfect query
correctness rate close to 99.9%. Especially for SQLancer+DQP,
it is designed to execute the same valid SQL query multiple
times with different optimization settings to understand the
impact of the query optimization on the query execution plan,
which leads to a near-perfect query correctness rate. However,
the handwritten SQL templates limit the flexibility of both
tools in exploring the vast grammar space of the DBMSs.
Although they achieve higher query correctness rates than
SQLBull in Figure 8c, Figure 8f, and Figure 8i, they fall behind
by achieving a lower code coverage in Figure 8b, Figure 8e,
and Figure 8h because the generated queries are less diverse.
Both techniques fail to detect as many bugs as SQLBull and
SQLBullM in our repeated 24-hour experiments.
SQLsmithC is yet another handwritten SQL template-based

fuzzing tool, mimicking the original SQL syntax imple-
mented in CockroachDB. It applies a custom probabilistic
model to decide which grammar rules to explore, and the
CockroachDB developers fine-tuned the model to generate more
diverse queries. However, the Top-down generation strategy of
SQLsmithC only focuses on selective SQL features, specifically
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Fig. 8: Evaluation of different testing tools on MySQL, MariaDB, CockroachDB, DuckDB, and PostgreSQL for 24 hours. The
Code Coverage Upper Bound line represents the 256K memory region synchronized between the fuzzer and the DBMS to track
the covered branches or basic blocks, i.e., the maximum number of branches or basic blocks coverage is 256K.
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DBMS ID Description Status Bug Type SQL Features Under Survey

DuckDB

1 Unexpected ill-formed nested PIVOT fixed (53a85c50) Crash Subquery, JOIN
2 Incorrect handling of ENUM in PIVOT fixed (f304fe55) Crash Subquery, CASE
3 Ill-formed CREATE VIEW statement fixed (64933f52) Crash /
4 Uncaught exception in EXPLAIN SELECT fixed (292d40e2) Crash /
5 Subquery binding error confirmed (15640) Fatal Error Subquery, GROUP BY, HAVING
6 JOIN USING columns handling from BindContext fixed (22a67063) Fatal Error Subquery, JOIN
7 Incorrect handling of COALESCE with FULL JOIN fixed (200e8bd5) Fatal Error Subquery, JOIN
8 Unsupported POSITIONAL JOIN in subquery fixed (854885cf) Fatal Error Subquery, JOIN
9 Incorrect handling of subqueries confirmed (15525) Fatal Error Subquery, ORDER BY
10 Incorrect handling for subqueries in LATERAL JOIN fixed (ecfe7397) Fatal Error Subquery, JOIN
11 Issue in LATERAL JOIN handling confirmed (15344) Fatal Error Subquery, JOIN
12 Issues with unpacked columns and the NOT operator fixed (a1335f6f) Fatal Error CASE, JOIN
13 Cannot copy bound subquery node confirmed (15657) Fatal Error Subquery, OVER
14 Incorrect handling for execute_cast fixed (1bf1ed97) Fatal Error CASE
15 Incorrect RIGHT JOIN handling fixed (2035c3cc) Fatal Error JOIN
16 Incorrect type handling of subqueries fixed (4ddedc46) Fatal Error Subquery
17 Uncaught error within in-map casting fixed (5a3fde7d) Fatal Error CASE
18 INSERT BY NAME + DEFAULT VALUES fixed (5ebf174e) Fatal Error CASE
19 USING columns of FULL JOIN in PIVOT fixed (88c73e6c) Fatal Error JOIN
20 Incorrect handling of statement parameter fixed (9199d11a) Fatal Error /
21 Issue with subquery result type handling fixed (63f6bc2b) Assertion Failure Subquery, CASE, ORDER BY, GROUP BY, WINDOW
22 Incorrectly apply DISTINCT on empty target list fixed (f35f9f9a) Assertion Failure Subquery, GROUP BY, WINDOW
23 Incorrect handling of STAR expression with empty value confirmed (16828) Assertion Failure Subquery, GROUP BY
24 Issues related to USING Binding handling fixed (a1335f6f) Assertion Failure CASE, JOIN
25 Another issues related to USING context handling fixed (339419e9) Assertion Failure Subquery, JOIN
26 Incorrect handling of duplicated alias from JOINs fixed (3ae5cf3b) Assertion Failure Subquery, JOIN
27 Issue in generated column specifying fixed (23feff31) Assertion Failure CASE
28 Array Type handling error confirmed (16827) Assertion Failure Subquery
29 Incorrect handling comparison type fixed (ddcb3e74) Assertion Failure /
30 Faulty assertion in LOGICAL PROJECTION fixed (08b0415c) Assertion Failure /
31 Incorrect handling of SQL expression unfolding confirmed (16826) Assertion Failure /

MySQL

32 Segfault in JOIN::refresh_base_slice confirmed (117082) Crash Subquery, CASE, JOIN
33 Segfault in Table_ref::fetch_number_of_rows fixed (8.0.42, 8.4.5, 9.3.0) Crash Subquery
34 Segfault in VALIDATION confirmed (117207) Crash /
35 Assertion failure within indexed tree modification confirmed (117066) Assertion Failure Subquery, CASE, ORDER BY, GROUP BY, OVER
36 Assertion ‘sl->join == nullptr || is_executed()’ failed confirmed (117080) Assertion Failure Subquery, JOIN, GROUP BY, HAVING, ORDER BY
37 Assertion escape_arg != nullptr failed confirmed (117065) Assertion Failure CASE, OVER
38 MoveCompositeIteratorsFromTablePath confirmed (117079) Assertion Failure ORDER BY, OVER
39 Incorrect handling in constant propagation confirmed (117068) Assertion Failure GROUP BY, HAVING
40 Assertion hton->flags & HTON_IS_SECONDARY failed confirmed (117061) Assertion Failure /
41 Assertion failure in fill_alter_inplace_info confirmed (117064) Assertion Failure /

CockroachDB

42 Panic: SHOW EXPERIMENTAL_FINGERPRINTS fixed (e248fccc) Crash Subquery, ORDER BY, WINDOW
43 Panic: Ill-formed CREATE TABLE statement fixed (ad1f8ab5) Crash Subquery, WINDOW
44 Panic: SELECT with JOIN and SYSTEM TIME confirmed (133395) Crash JOIN
45 Panic on AS OF SYSTEM TIME fixed (d9cd2a2f) Crash /
46 Panic: function in SET LOCAL SCHEMA fixed (5bcb5801) Crash /
47 Internal Error: vectorized engine error confirmed (130354) Fatal Error Subquery
48 Internal Error: ill-formed cursor fetch fixed (7dd9e95f) Fatal Error Subquery
49 Invalid memory address or nil pointer dereference confirmed (131121) Fatal Error Subquery
50 Internal Error: index out of range with annotation fixed (8847382d) Fatal Error Subquery
51 Internal Error: BUCKET_COUNT = NULL fixed (1bdef168) Fatal Error /
52 Internal Error: Error Stats from column set confirmed (130593) Fatal Error /
53 Internal Error: NULL virtual primary key column fixed (c7af6aaf) Fatal Error /
54 Internal Error when using incorrect type in REVOKE fixed (4b26b964) Fatal Error /
55 Using POSITION that returns NULL with JOIN confirmed (132577) Fatal Error /

MariaDB

56 Segfault: internal_str2dec on INSERT confirmed (36354) Crash Subquery, JOIN
57 Segfault: Item_subselect::init confirmed (36353) Crash Subquery
58 Assertion failure builtin_select.first... confirmed (36369) Assertion Failure CASE, Subquery, LIMIT
59 Assertion failure ASSERT(0) confirmed (36370) Assertion Failure /
60 Assertion failure !(thd->lex)->if_exists() confirmed (36371) Assertion Failure /

PostgreSQL
61 Segfault: Incorrect handling of duplicated SET DEFAULT list confirmed (18879) Crash /
62 Assertion Failure: cte->ctequery... confirmed (18877) Assertion Failure Subquery
63 Assertion Failure: cte->cterecursive || ... confirmed (18878) Assertion Failure Subquery, ORDER BY, GROUP BY, JOIN

TABLE II: New Unique Zero-day Bugs Detected by SQLBull. SQLBull detects 63 bugs in total, including 15 crashes, 25 internal errors,
and 23 assertion failures. Among them, 34 bugs are fixed. SQL Features Under Survey lists a few interesting SQL features presented in the
bug-triggering PoCs. The selection of these features is discussed in §V-A. / means none of the SQL feature under survey is presented in
the PoC. If the bug is marked as fixed, we provide the hash of the source control commit (in the bracket) that fixes the bug. If the bug is
marked as confirmed, we provide the Bug Tracking ID for each DBMS bug reporting system in the bracket.

GROUP BY, ORDER BY, HAVING, and WINDOW expressions, thus falls
short on detecting bugs related to other SQL features.

We then compare SQLBull with a well-known syntax-based
generation technique, SQLBullMAB, which utilizes the ϵ-greedy

strategy to determine which grammar rules to explore at each
step of the TD grammar exploration. The reward of SQLBullMAB
is determined by the acceptance rate and the code coverage
brought by the generated queries. During testing, we observed
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DBMS

SQL Features Under Survey

Subquery

GROUP BY,
ORDER BY,

HAVING,
WINDOW,

OVER

JOIN
Conditional

SQL
Expressions

Total

DuckDB 17 (54.8%) 5 (16.1%) 12 (38.7%) 8 (25.8%) 25 (80.6%)
MySQL 4 (40.0%) 4 (40.0%) 2 (20.0%) 3 (30.0%) 7 (70.0%)

CockroachDB 6 (42.9%) 2 (14.3%) 1 (7.14%) 0 (0.00%) 7 (50.0%)
MariaDB 2 (40.0%) 1 (20.0%) 1 (20.0%) 1 (20.0%) 3 (60.0%)

PostgreSQL 2 (66.6%) 1 (33.3%) 1 (33.3%) 0 (0.00%) 2 (66.6%)
Total 31 (49.2%) 13 (20.6%) 17 (30.0%) 12 (19.0%) 44 (69.8%)

TABLE III: Statistics of SQL features under survey upon all the
zero-day bugs detected by SQLBull.

DBMS Tools

SQL Features Under Survey

Subquery

GROUP BY,
ORDER BY,

HAVING,
WINDOW,

OVER

JOIN
Conditional

SQL
Expressions

MySQL

SQLBull 69.5% 51.1% 21.8% 34.1%
SQLBullM 69.8% 57.7% 18.0% 64.1%
SQLBullTD 41.3% 13.2% 1.3% 0.38%
SQLBullMAB 47.4% 42.8% 18.5% 3.9%
SQLBullNE 46.0% 40.8% 4.57% 12.6%
Squirrel 19.3% 19.5% 13.1% 5.6%
AFL 0.00% 0.00% 0.00% 0.00%

CockroachDB

SQLBull 46.9% 33.0% 39.2% 39.0%
SQLBullM 55.6% 57.1% 26.5% 33.4%
SQLancer 3.6% 18.9% 5.3% 7.2%
SQLsmith 12.8% 62.6% 9.8% 3.6%

TABLE IV: Statistics of SQL features under survey upon different
tools. The statistics are calculated based on all the SQL queries
generated from each testing tool running for 24 hours. We provide 0%
statistics for AFL to demonstrate that it does not effectively explore
these SQL features by mutation, but simply repeats the features
presented in the seeds.

that SQLBullMAB tends to generate correct but simple queries,
such as “(((TABLE t0)))”, where the repeated parenthesized
expression is a recursive expression to hold the “TABLE” sub-
expression. These repeated, simple yet correct expressions are
promoted because they can easily pass the semantic check
of the DBMS. However, SQLBullMAB rarely tested the feature-
rich SQL features. Because the grammar rules that define
feature-rich SQL features are not in the shallow layers and the
exploration of the deeper and feature-rich grammar is more
likely to lead to sanity check rejections, the exploration of these
feature-rich grammar would lower the reward of SQLBullMAB,
and SQLBullMAB would avoid exploring feature-rich grammar.
SQLBullMAB finds 2 bugs in the evaluation by only exploring
the shallow grammar rules. In fact, these 2 bugs are easy to
detect, as SQLBull and SQLBullM also reproduced them. The
bug IDs are 40 and 41 in Table II.
SQLBullTD employs naive random Top-down syntax-based

SQL generation. It suffers from the performance issue in-
troduced by the recursive grammar, resulting in only simple
queries being generated using shallow grammar. This is
demonstrated by the significantly lower code coverage and
fewer bugs found compared to SQLBull in Figure 8a, Figure 8b,
Figure 8j, and Figure 8k. It finds three easy-to-detect bugs also
reproduced by SQLBull and SQLBullM, Bug IDs 30, 31, and 40

in Table II.
Lastly, we evaluate the traditional bit-flipping fuzzing tool,

AFL, on all C/C++ DBMSs. AFL does not understand the SQL
grammar when mutating the inputs. Instead, it randomly flips
the bits of the input SQL query or randomly concatenates part
of one SQL query with another SQL query. Naturally, this
mutation strategy will end up with a low query correctness
rate where almost all the mutated queries are rejected by
the DBMS parser. The low query correctness rate is verified
in Figure 8c, Figure 8f, Figure 8l, and Figure 8o, where all
the query correctness rates are lower than 1%. The inefficient
mutation strategy also stops AFL from discovering new feature-
rich grammar (Figure 8b, Figure 8e, Figure 8k, and Figure 8n).
AFL found no bugs. In summary, AFL’s inefficiency implies
the need to apply the syntax-based testing technique in DBMS
bug hunting.

D. Influence of Bottom-up Explorer Starting Point

The default configuration of SQLBull targets SQL expressions
as the BU starting points, as shown in Table I. However,
this configuration is not the only choice. In this section,
we investigate the influence of different starting points on
the performance of SQLBull. We redirect the BU grammar
exploration to start from arbitrary grammar rules except the
default SQL expression ones, and evaluate the performance of
SQLBullNE on MySQL.

As shown in Figure 8b, SQLBullNE achieves a lower code
coverage than SQLBull (∼13% lower) because it is distracted
by exploring arbitrary grammar rules that may not be feature-
rich. Specific explored grammar rules may even be marked
as Unimplemented or directly lead to sanity check rejections.
Fortunately, the BU grammar exploration still helps SQLBullNE
to find 2 bugs on average in one run, proving its effectiveness
by discovering Bug IDs 37, 38, and 40 in Table II across
different runs. Consequently, we encourage the DBMS testers
to freely attempt other BU starting points. For example, redirect
SQLBull to target previously bug-triggering SQL grammar or
target newly introduced SQL grammar changes. We believe
SQLBull is capable of achieving surprising results given the
flexibility and effectiveness of the BU grammar exploration.

E. Statistics of SQL Features

In this section, we investigate the effectiveness of SQLBull
in exposing feature-rich SQL features. Because we configure
SQLBull to explore the SQL expression grammar, SQLBull is
tailored to uncover the grammar that contains SQL expressions
in the PoCs. As a result, of all the bugs detected by SQLBull, 44
(69.8 %) of the bug-triggering PoCs contain the SQL features
under survey (§V-A) after applying the PoC simplification
steps from Algorithm 3 in Appendix A. Table III presents
the statistics of SQL features under survey upon all the zero-
day bugs detected by SQLBull, demonstrating that all SQL
features under survey are heavily contributing to the bug
finding. Table II further details which bug-triggering PoC
contains which SQL features. Because each selected SQL
feature relates to a non-trivial number of bug-triggering SQL
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queries, we believe SQLBull is capable of effectively exploring
all these SQL features by traversing the SQL grammar. Table IV
further shows how frequently different testing tools explore
these SQL features. While most baselines prioritized generating
queries with Subquery and logical processing expressions such
as GROUP BY, they generated significantly fewer tests with
JOIN and Conditional SQL Expressions, limiting their bug-
finding effectiveness. SQLBull and SQLBullM, instead, can more
thoroughly explore all the SQL features, so they can detect more
bugs. SQLBullNE exposes fewer SQL features than SQLBull,
because it is not configured to target the SQL expression
grammar rules, on which all SQL features under survey are
defined. AFL hardly generates any valid SQL queries, and thus
does not explore any of the SQL features under survey.

VI. RELATED WORKS

Syntax-based automatic testing has been widely adopted
to find bugs in various software systems [59]–[62]. We first
discuss the existing syntax-based testing tools for the DBMS
testing community [30], [39], [52] in §VI-A and §VI-B. We
extend the scope of syntax-based testing tools to other security-
oriented testing domains [63]–[66] in Appendix B.

A. SQL Template-based DBMS Testing Tools

Certain existing DBMS testing tools rely on handwritten
SQL templates to generate the SQL queries. These templates
are implemented with custom programming languages, such as
C/C++ [31], [35], Java [27], [30], and languages designed for
SAT solvers [67], [68]. The most well-known template-based
query testing framework is SQLsmith [31]. The developers of
CockroachDB recently ported SQLsmith to support their own
DBMS [57], which is referred to as SQLsmithC in this paper.
SQLancer [30] is another template-based DBMS testing tool
that detects DBMS memory and logic bugs [54]–[56]. Its
latest improvement, SQLancer+QPG [52] and SQLancer+DQP [53],
leverage the DBMS query plan and optimization hints to guide
the query generation. All of the SQL template-based DBMS
testing tools suffer from the same limitation: their hand-crafted
SQL templates are limited in covering the complete set of SQL
grammar implemented by the DBMSs.

B. Grammar Code-based DBMS Testing Tools

Several DBMS testing frameworks utilize the DBMS built-
in grammar code to generate syntactically valid SQL queries.
Squirrel is one of the state-of-the-art syntax-based DBMS
fuzzing tools in this category [39]. Adopting the Top-down
generation methodology, Squirrel parses the DBMS grammar
into its internal representation (IR) and employs type-based
IR mutation to its input corpus to generate new queries. RATEL
extends Squirrel’s capabilities to test enterprise-level DBMSs
like GaussDB [69]. LEGO instantiates the query statements
with type-affinity awareness for a higher query correctness
rate [70]. WingFuzz optimizes the fuzzing feedback to reduce
the coverage noise caused by concurrent DBMS threads [71].
However, all these tools mentioned above prioritize all the SQL
grammar presented in the input seed, even if some are not useful

for bug triggering. Thus, they waste time testing non-critical
SQL features and are inefficient in exposing DBMS bugs that
require feature-rich SQL features. Additionally, DynSQL [72]
implements another DBMS fuzzing technique that improves
the query correctness rate based on the real-time feedback
from the DBMS. The idea of DynSQL is complementary to
our work. We can combine the idea of DynSQL with SQLBull
to improve the fuzzing efficiency further. BuzzBee is another
syntax-based fuzzing tool that expands the dynamic semantic
resolving technique from Squirrel to other non-relational
DBMSs [73]. While BuzzBee claims to support one relational
DBMS, PostgreSQL, the author of BuzzBee removes the code
of PostgreSQL grammar handling in its public repo, which is
the key component for BuzzBee to generate valid PostgreSQL
queries. Unfortunately, except for Squirrel, none of the other
tools are open-sourced. Of all the testing tools introduced,
Squirrel remains one of the most effective DBMS fuzzing
tool to detect DBMS memory bugs, and it is the default go-to
tool for the security community to detect DBMS memory bugs.
Therefore, we compare SQLBull with Squirrel in this paper.

VII. DISCUSSION

Grammar coverage from Bottom-up grammar exploration.
By building the BU grammar path from specific grammar
starting points, sometimes it is infeasible to cover all the
SQL statement types supported by the DBMS. For example,
it is impossible to JOIN multiple tables in the ALTER TABLE
DROP COLUMN statement. Therefore, giving a set of specific
interesting grammar. SQLBull is not guaranteed to cover all
the SQL grammar supported by the DBMS. We encourage
the DBMS testers to try different sets of SQL grammar rules
as the starting points of the BU grammar exploration, which
potentially boosts SQLBull with better SQL feature coverage. It
is also a promising research direction to dynamically introduce
new BU exploration starting points based on the feedback from
the fuzzing process. We will leave this as our future work.

VIII. CONCLUSION

In this work, we propose a new Bottom-up (BU) syntax-
based SQL generation technique, which redirects more testing
resources to explore SQL grammar rules that define the syntaxes
of feature-rich SQL functionalities. The prototype syntax-based
fuzzer, SQLBull, adopts the BU strategy with the following key
designs: 1) Prioritize grammar exploration on the feature-rich
grammar. 2) Handle recursive grammar efficiently. 3) Generate
diverse SQL queries that explore the interesting grammar rules.
In the evaluation, SQLBull discovers 63 unique zero-day bugs
across 5 well-tested DBMSs, outperforming all existing tools
and demonstrating the effectiveness of BU.
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APPENDIX

A. PoC Simplification Algorithm

When the DBMS crashes or throws fatal error in-
dicating memory or data corruption, SQLBull uses the
PoC Simplification algorithm shown in Algorithm 3 to
simplify the generated SQL query sequence and save the
simplified queries as bug PoC.

Algorithm 3: PoC Simplification
1: function PoCSimplification(stmt_seq)
2: simpl_stmt_seq ← ∅
3: for all stmt ∈ stmt_seq do
4: reset_database()
5: for all stmt′ ∈ stmt do
6: if stmt == stmt′ then
7: continue
8: end if
9: execute(stmt′)

10: end for
11: if not database_crash() then
12: simpl_stmt_seq ← simpl_stmt_seq + stmt
13: end if
14: end for
15: for all stmt ∈ simpl_stmt_seq do
16: for all tree_node ∈ stmt.get_tree_nodes() do
17: reset_database()
18: for all stmt′ ∈ simpl_stmt_seq do
19: if stmt == stmt′ then
20: stmt′ ← stmt′.copy().remove(tree_node)
21: end if
22: execute(stmt′)
23: end for
24: if not database_crash() then
25: stmt← stmt.remove(tree_node)
26: end if
27: end for
28: end for
29: return simpl_stmt_seq
30: end function

B. Syntax-based Testing Tools on Other Systems

The technique of syntax-based testing has also been widely
adopted in other systems, such as programming systems (e.g.,
JavaScript engines) [63] and network protocol implementa-
tions [74]. Specifically, [34] proposes a syntax-based fuzzing
framework and applies the learned grammar to generate Link
Layer Discovery Protocol (LLDP). DIE applies type-based
AST mutation extracted from the JavaScript grammar code
while preserving the context-rich parts of the input based
on the intuition of the JavaScript programs [75]. NAUTILUS
demonstrates that code coverage feedback is beneficial for
guiding syntax-based input generation [33]. [76] proposes a
syntax-based fuzzing tool that intentionally introduces slight
syntactic errors to the generated inputs to expose faulty parser
logic. Many of these previous works formulate the task of
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syntax-based input generation as a Multi-arm Bandit (MAB)
problem [33], [34], [58]. However, they all employ Top-down
generation, which is not suitable for deep bug discovery in
DBMS. To prioritize feature-rich SQL grammar that is more
likely to expose bugs, some existing works [32], [38], [58]
prioritize the grammar rules used to construct the previous
failures. However, the previous failure inputs may not contain
the deep SQL grammar we want to explore in this paper.
Furthermore, not all grammar used in the previous failure
is useful for triggering bugs. By blindly prioritizing all the
grammar distributed in these inputs without knowing which
grammar is critical for bug triggering, previous failure inputs
are less efficient for preserving the deep SQL grammar to
uncover new deep bugs.
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